Desinformación y vacunas en redes
Comportamiento de los bulos en Twitter
DOI:
https://doi.org/10.4185/RLCS-2023-1820Palabras clave:
desinformación, bulos, vacunas, Twitter, inteligencia artificial, información de salud, EspañaResumen
Introducción: Los bulos antivacunas son un tipo de desinformación sanitaria con gran peligro, dados sus efectos tangibles en la sociedad. Existen investigaciones relevantes sobre tipología de bulos, discursos negacionistas en redes o popularidad de las vacunas, pero este estudio aporta una visión complementaria y pionera, centrada en el discurso antivacunas de COVID-19 en Twitter desde la perspectiva del comportamiento de las cuentas que difunden desinformación. Metodología: A partir del método de FacTeR-Check, compuesto por cinco fases y una primera muestra basada en un centenar de bulos (diciembre de 2020 y septiembre de 2021) se descargaron 220.246 tuits, filtrados para trabajar con inteligencia artificial y técnicas de inferencia de lenguaje natural (NLI) sobre una segunda muestra de más de 36.000 tuits (N=36.292). Resultados: Los resultados ofrecen predominancias de algunos tipos de producción de desinformación, así como la eficacia de crear contenido original falso para agrupar seguidores o la identificación de un periodo (2013-2020) de más dominación de los usuarios que apoyan bulos, frente a los que los niegan. Discusión: El artículo muestra cómo la tipología o morfología de las cuentas puede ser un factor predictivo acerca del comportamiento de dichos usuarios respecto al caso particular de los bulos analizados. Conclusiones: Se ofrecen patrones de comportamiento del discurso antivacunas en Twitter, que pueden ayudar a gestionar futuros fenómenos similares. Dado el significativo tamaño de la muestra y de las técnicas empleadas, se puede concluir que este trabajo establece una base sólida para otros estudios comparativos sobre desinformación y salud en redes sociales.
Descargas
Citas
Almansa-Martínez, A., Fernández-Torres, M. J. y Rodríguez-Fernández, L. (2022). Desinformación en España un año después de la COVID-19. Análisis de las verificaciones de Newtral y Maldita . Revista Latina de Comunicación Social, 80, 183-200. https://doi.org/10.4185/RLCS-2022-1538 DOI: https://doi.org/10.4185/RLCS-2022-1538
Aparici, R., García-Marín, D. y Rincón-Manzano, L. (2019). Noticias falsas, bulos y trending to-pics. Anatomía y estrategias de la desinformación en el conflicto catalán. El Profesional de la Información, 28. https://doi.org/10.3145/epi.2019.may.13 DOI: https://doi.org/10.3145/epi.2019.may.13
Blankenship, E. B., Goff, M. E., Yin, J., Tse, Z. T. H., Fu, K. W., Liang, H. y Fung, I. C. H. (2018). Sentiment, contents, and retweets: a study of two vaccine-related Twitter datasets. The Permanente Journal, 22. https://doi.org/10.7812/tpp/17-138 DOI: https://doi.org/10.7812/TPP/17-138
Bodaghi, A. y Oliveira, J. (2022). The theater of fake news spreading, who plays which role? A study on real graphs of spreading on Twitter. Expert Systems with Applications, 189, https://doi.org/10.1016/j.eswa.2021.116110 DOI: https://doi.org/10.1016/j.eswa.2021.116110
Carrasco-Polaino, R., Martín-Cárdaba, M. y Villar-Cirujano, E. (2021). Citizen participation in Twitter: Anti-vaccine controversies in times of COVID-19. Comunicar, 69, 21-31. https://doi.org/10.3916/C69-2021-02 DOI: https://doi.org/10.3916/C69-2021-02
Caro-Castaño, Lucía (2015). La identidad mosaico como modo de subjetividad propio de las redes sociales digitales y sus formas de comunicación paramediáticas: La microcelebridad y la marca personal. [Tesis doctoral, Universidad de Cádiz]. https://bit.ly/3mJwShQ
Deiner, M. S., Fathy, C., Kim, J., Niemeyer, K., Ramirez, D., Ackley, S. F. y Porco, T. C. (2019). Facebook and Twitter vaccine sentiment in response to measles outbreaks. Health Informatics Journal, 25, 1116-1132. https://doi.org/10.1177/1460458217740723 DOI: https://doi.org/10.1177/1460458217740723
Döveling, K. Harju, A. y Sommer, D. (2018). From mediatized emotion to digital affect cultures: New technologies and global flows of emotion. Social Media + Society, 4, 1-11. https://doi.org/10.1177/2056305117743141 DOI: https://doi.org/10.1177/2056305117743141
El-Mohandes A., White, T.M., Wyka, K. et al. (2021). COVID-19 vaccine acceptance among adults in four major US metropolitan areas and nationwide. Scientific Reports, 11, https://doi.org/10.1038/s41598-021-00794-6 DOI: https://doi.org/10.1038/s41598-021-00794-6
Evanega, S. et al. (2021). Coronavirus misinformation: quantifying sources and themes in the COVID-19 infodemic. JMIR, 10. https://bit.ly/3HoN1RM DOI: https://doi.org/10.2196/preprints.25143
Garimella, V. R. K. y Weber, I. (2017). A long-term analysis of polarization on Twitter. En Proceedings of the International AAAI Conference on Web and Social Media, Mayo (No. 1). https://bit.ly/3mCmCb5 DOI: https://doi.org/10.1609/icwsm.v11i1.14918
Granovetter, M. S. (1973). The strength of weak ties. American journal of sociology, 78(6), 1360-1380. https://bit.ly/3sD5AgO DOI: https://doi.org/10.1086/225469
Himelboim, I., Xiao, X., Lee, D. K. L., Wang, M. Y. y Borah, P. (2020). A social networks approach to understanding vaccine conversations on Twitter: Network clusters, sentiment, and certainty in HPV social networks. Health Communication, 35, 607-615. https://doi.org/10.1080/10410236.2019.1573446 DOI: https://doi.org/10.1080/10410236.2019.1573446
Huertas-García, Á., Huertas-Tato, J., Martín, A. y Camacho, D. (2021). CIVIC-UPM at CheckThat! 2021: integration of transformers in misinformation detection and topic classification. Faggioli et al.[33]. https://bit.ly/3JrhwIi
Huertas-García, Á., Huertas-Tato, J., Martín, A. y Camacho, D. (2021). Countering Misinformation Through Semantic-Aware Multilingual Models. International Conference on Intelligent Data Engineering and Automated Learning, noviembre, 312-323. Springer. https://bit.ly/319DiiF DOI: https://doi.org/10.1007/978-3-030-91608-4_31
Huertas-Tato, J., Martín, A. y Camacho, D. (2021). SML: a new Semantic Embedding Alignment Transformer for efficient cross-lingual Natural Language Inference. arXiv preprint arXiv:2103.09635. https://bit.ly/3qtsbts
Ireton, Cherilyn, y Posetti, Julie (eds). (2018). Journalism, ‘fake news’ and disinformation: Handbook for journalism education and training. Unesco. https://bit.ly/3mGXoZd
Islam, M.S. et al. (2020). COVID-19-related infodemic and its impact on public health: a global social media analysis. The American Journal of Tropical Medicine and Hygiene, 103. 1621-1629. https://dx.doi.org/10.4269%2Fajtmh.20-0812 DOI: https://doi.org/10.4269/ajtmh.20-0812
Kietzmann, J. H., Hermkens, K., McCarthy, I. P. y Silvestre, B. S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business Horizons, 54, 241-251. https://bit.ly/3mGwujY DOI: https://doi.org/10.1016/j.bushor.2011.01.005
Kim, H. K., Ahn, J., Atkinson, L. y Kahlor, L.A. (2020). Effects of COVID-19 misinformation on information seeking, avoidance, and processing: a multi-country comparative study. Science Commun, 42. https://doi.org/10.1177/1075547020959670 DOI: https://doi.org/10.1177/1075547020959670
Knuutila, A., Neudert, L. y Howard, P. (2020). Global fears of disinformation: Perceived Internet and Social Media Harms in 142 countries, Oxford Internet Institute. The project on computational propaganda, diciembre, https://bit.ly/3FEoCXD
Kouzy, R., Abi Jaoude, J., Kraitem, A., El Alam, M. B., Karam, B., Adib, E., Zarka, J., Traboulsi, C., Akl, E. W. y Baddour, K. (2020). Coronavirus Goes Viral: Quantifying the COVID-19 Misinformation Epidemic on Twitter. Cureus, 12, https://doi.org/10.7759/cureus.7255 DOI: https://doi.org/10.7759/cureus.7255
Kummervold, P. E., Martin, S., Dada, S., Kilich, E., Denny, C., Paterson, P. y Larson, H. J. (2021). Categorizing Vaccine Confidence With a Transformer-Based Machine Learning Model: Analysis of Nuances of Vaccine Sentiment in Twitter Discourse. JMIR Medical Informatics, 9, https://doi.org/10.2196/29584 DOI: https://doi.org/10.2196/preprints.29584
Larrondo-Ureta, A., Fernández, S.-P., & Morales-i-Gras, J. (2021). Desinformación, vacunas y Covid-19. Análisis de la infodemia y la conversación digital en Twitter. Revista Latina de Comunicación Social, 79, 1-18. https://doi.org/10.4185/RLCS-2021-1504 DOI: https://doi.org/10.4185/RLCS-2021-1504
Loomba, Sahil, de Figueiredo, A., Piatek, S. J., de Graaf, K. y Larson, H. J. (2021). Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nature Human Behaviour, 5, 337-348. https://doi.org/10.1038/s41562-021-01056-1 DOI: https://doi.org/10.1038/s41562-021-01056-1
López-Martín, Á., Gómez-Calderón, B. y Córdoba-Cabús, A. (2021). Desinformación y verificación de datos. El caso de los bulos sobre la vacunación contra la Covid-19 en España. Revista Ibérica de Sistemas e Tecnologias de Informação, 431-443.
MacCartney, B. (2009). Natural language inference. Stanford University. https://bit.ly/3qsAtla
Mantzarlis, A. (2018). Fact-checking 101. 85-100. En Ireton, Cherilyn, y Posetti, Julie (eds). Journalism, ‘fake news’ and disinformation: Handbook for journalism education and training. Paris: Unesco. https://bit.ly/3pAWizZ
Martín, A., Huertas-Tato, J., Huertas-García, Á., Villar-Rodríguez, G. y Camacho, D. (2021). FacTeR-Check: Semi-automated fact-checking through Semantic Similarity and Natural Language Inference. arXiv preprint arXiv:2110.14532. https://bit.ly/32xKfux DOI: https://doi.org/10.1016/j.knosys.2022.109265
Morel, A.P.M. (2021). Negationism of the COVID-19 and popular health education: to beyond the necropolitics. Trabalho, Educação e Saúde, 19. https://doi.org/10.1590/1981-7746-sol00315 DOI: https://doi.org/10.1590/1981-7746-sol00315
Nowak, S. A., Chen, C., Parker, A. M., Gidengil, C. A. y Matthews, L. J. (2020). Comparing covariation among vaccine hesitancy and broader beliefs within Twitter and survey data. PloS One, 15. https://doi.org/10.1371/journal.pone.0239826 DOI: https://doi.org/10.1371/journal.pone.0239826
Pérez-Escolar, M. y Noguera-Vivo, J.M. (eds.) (2022). Hate speech and polarization in participatory society. Routledge. https://bit.ly/3FE8EwB DOI: https://doi.org/10.4324/9781003109891
Saby D. et al. (2021) Twitter Analysis of COVID-19 Misinformation in Spain. En Mohaisen D., Jin R. (eds.) Computational Data and Social Networks. CSoNet 2021. Lecture Notes in Computer Science, 13116. Springer. https://doi.org/10.1007/978-3-030-91434-9_24 DOI: https://doi.org/10.1007/978-3-030-91434-9_24
Salaverría, R., Buslón, N., López-Pan, F., León, B., López-Goñi, I. y Erviti, M.C. (2020). Desinformación en tiempos de pandemia: tipología de los bulos sobre la COVID-19. El Profesional de la Información, 29. https://doi.org/10.3145/epi.2020.may.15 DOI: https://doi.org/10.3145/epi.2020.may.15
Serrano-Puche, J. (2021). Digital desinformation and emotions: exploring the social risks of affective polarization. International Review of Sociology. 31, 231-245. https://10.1080/03906701.2021.1947953 DOI: https://doi.org/10.1080/03906701.2021.1947953
Subbaraman, N. (2021). This COVID-vaccine designer is tackling vaccine hesitancy-in churches and on Twitter. Nature, 377-377. https://doi.org/10.1038/d41586-021-00338-y DOI: https://doi.org/10.1038/d41586-021-00338-y
Shahi, G.; Dirkson, A. y Majchrzak, T. (2021): An exploratory study of COVID-19 misinformation on Twitter. Online Social Networks and Media, 22, https://doi.org/10.1016/j.osnem.2020.100104 DOI: https://doi.org/10.1016/j.osnem.2020.100104
Surian, D., Nguyen, D. Q., Kennedy, G., Johnson, M., Coiera, E. y Dunn, A. G. (2016). Characterizing Twitter discussions about HPV vaccines using topic modeling and community detection. Journal of Medical Internet Research, 18. https://doi.org/10.2196/jmir.6045 DOI: https://doi.org/10.2196/jmir.6045
Thelwall, M., Kousha, K. y Thelwall, S. (2021). COVID-19 vaccine hesitancy on English-language Twitter. El Profesional de la información, 30. https://doi.org/10.3145/epi.2021.mar.12 DOI: https://doi.org/10.3145/epi.2021.mar.12
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N. y Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 5998-6008. https://bit.ly/3pFbpYY
Yardi, S. y Boyd, D. (2010). Dynamic debates: An analysis of group polarization over time on twitter. Bulletin of Science, Technology & Society, 30, 316-327. https://doi.org/10.1177%2F0270467610380011 DOI: https://doi.org/10.1177/0270467610380011
Zhou, X., Coiera, E., Tsafnat, G., Arachi, D., Ong, M. S. y Dunn, A. G. (2015). Using social connection information to improve opinion mining: Identifying negative sentiment about HPV vaccines on Twitter. MEDINFO https://bit.ly/3mGQ2ow
Zucker, Jane R. et al., (2020). Consequences of Undervaccination — Measles Outbreak, New York City, 2018–2019. The New England Journal of Medicine. 382, 1009-1017. https://doi.org/10.1056/NEJMoa1912514 DOI: https://doi.org/10.1056/NEJMoa1912514
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 José Manuel Noguera, María del Mar Grandío-Pérez, Guillermo Villar-Rodríguez, Alejandro Martín, David Camacho
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.