Disinformation and vaccines on social networks
Behavior of hoaxes on Twitter
DOI:
https://doi.org/10.4185/RLCS-2023-1820Keywords:
disinformation, hoaxes, vaccines, Twitter, artificial intelligence, health information, SpainAbstract
Introduction: Anti-vaccine hoaxes are a highly dangerous type of health misinformation, given their direct effects on society. Although there is relevant research on typology of hoaxes, denialist discourses on networks or about the popularity of vaccines, this study provides a complementary and new vision, focused on the anti-vaccine discourse of COVID-19 on Twitter from the perspective of the behavior of the accounts that spread disinformation. Methodology: Using the FacTeR-Check method, with five phases and a first sample of a hundred hoaxes (December 2020 and September 2021), 220,246 tweets were downloaded, filtered to work with AI and natural language inference techniques (NLI) on a second sample of more than 36,000 tweets (N=36,292). Results: The results offer predominance of some types of disinformation production, as well as the effectiveness of creating false original content to gather followers or the identification of a period (2013-2020) of more domination of users who support hoaxes, compared to those who deny it. Discussion: The article shows how the typology of the accounts can be a predictive factor about the behavior of users who spread disinformation. Conclusions: Similar behavioral patterns of anti-vaccine discourse on Twitter are offered, which can help manage future similar phenomena. Given the significant size of the sample and the techniques used, it can be concluded that this work establishes a solid foundation for other comparative studies on disinformation and health in social networks.
Downloads
References
Almansa-Martínez, A., Fernández-Torres, M. J. y Rodríguez-Fernández, L. (2022). Desinformación en España un año después de la COVID-19. Análisis de las verificaciones de Newtral y Maldita . Revista Latina de Comunicación Social, 80, 183-200. https://doi.org/10.4185/RLCS-2022-1538 DOI: https://doi.org/10.4185/RLCS-2022-1538
Aparici, R., García-Marín, D. y Rincón-Manzano, L. (2019). Noticias falsas, bulos y trending to-pics. Anatomía y estrategias de la desinformación en el conflicto catalán. El Profesional de la Información, 28. https://doi.org/10.3145/epi.2019.may.13 DOI: https://doi.org/10.3145/epi.2019.may.13
Blankenship, E. B., Goff, M. E., Yin, J., Tse, Z. T. H., Fu, K. W., Liang, H. y Fung, I. C. H. (2018). Sentiment, contents, and retweets: a study of two vaccine-related Twitter datasets. The Permanente Journal, 22. https://doi.org/10.7812/tpp/17-138 DOI: https://doi.org/10.7812/TPP/17-138
Bodaghi, A. y Oliveira, J. (2022). The theater of fake news spreading, who plays which role? A study on real graphs of spreading on Twitter. Expert Systems with Applications, 189, https://doi.org/10.1016/j.eswa.2021.116110 DOI: https://doi.org/10.1016/j.eswa.2021.116110
Carrasco-Polaino, R., Martín-Cárdaba, M. y Villar-Cirujano, E. (2021). Citizen participation in Twitter: Anti-vaccine controversies in times of COVID-19. Comunicar, 69, 21-31. https://doi.org/10.3916/C69-2021-02 DOI: https://doi.org/10.3916/C69-2021-02
Caro-Castaño, Lucía (2015). La identidad mosaico como modo de subjetividad propio de las redes sociales digitales y sus formas de comunicación paramediáticas: La microcelebridad y la marca personal. [Tesis doctoral, Universidad de Cádiz]. https://bit.ly/3mJwShQ
Deiner, M. S., Fathy, C., Kim, J., Niemeyer, K., Ramirez, D., Ackley, S. F. y Porco, T. C. (2019). Facebook and Twitter vaccine sentiment in response to measles outbreaks. Health Informatics Journal, 25, 1116-1132. https://doi.org/10.1177/1460458217740723 DOI: https://doi.org/10.1177/1460458217740723
Döveling, K. Harju, A. y Sommer, D. (2018). From mediatized emotion to digital affect cultures: New technologies and global flows of emotion. Social Media + Society, 4, 1-11. https://doi.org/10.1177/2056305117743141 DOI: https://doi.org/10.1177/2056305117743141
El-Mohandes A., White, T.M., Wyka, K. et al. (2021). COVID-19 vaccine acceptance among adults in four major US metropolitan areas and nationwide. Scientific Reports, 11, https://doi.org/10.1038/s41598-021-00794-6 DOI: https://doi.org/10.1038/s41598-021-00794-6
Evanega, S. et al. (2021). Coronavirus misinformation: quantifying sources and themes in the COVID-19 infodemic. JMIR, 10. https://bit.ly/3HoN1RM DOI: https://doi.org/10.2196/preprints.25143
Garimella, V. R. K. y Weber, I. (2017). A long-term analysis of polarization on Twitter. En Proceedings of the International AAAI Conference on Web and Social Media, Mayo (No. 1). https://bit.ly/3mCmCb5 DOI: https://doi.org/10.1609/icwsm.v11i1.14918
Granovetter, M. S. (1973). The strength of weak ties. American journal of sociology, 78(6), 1360-1380. https://bit.ly/3sD5AgO DOI: https://doi.org/10.1086/225469
Himelboim, I., Xiao, X., Lee, D. K. L., Wang, M. Y. y Borah, P. (2020). A social networks approach to understanding vaccine conversations on Twitter: Network clusters, sentiment, and certainty in HPV social networks. Health Communication, 35, 607-615. https://doi.org/10.1080/10410236.2019.1573446 DOI: https://doi.org/10.1080/10410236.2019.1573446
Huertas-García, Á., Huertas-Tato, J., Martín, A. y Camacho, D. (2021). CIVIC-UPM at CheckThat! 2021: integration of transformers in misinformation detection and topic classification. Faggioli et al.[33]. https://bit.ly/3JrhwIi
Huertas-García, Á., Huertas-Tato, J., Martín, A. y Camacho, D. (2021). Countering Misinformation Through Semantic-Aware Multilingual Models. International Conference on Intelligent Data Engineering and Automated Learning, noviembre, 312-323. Springer. https://bit.ly/319DiiF DOI: https://doi.org/10.1007/978-3-030-91608-4_31
Huertas-Tato, J., Martín, A. y Camacho, D. (2021). SML: a new Semantic Embedding Alignment Transformer for efficient cross-lingual Natural Language Inference. arXiv preprint arXiv:2103.09635. https://bit.ly/3qtsbts
Ireton, Cherilyn, y Posetti, Julie (eds). (2018). Journalism, ‘fake news’ and disinformation: Handbook for journalism education and training. Unesco. https://bit.ly/3mGXoZd
Islam, M.S. et al. (2020). COVID-19-related infodemic and its impact on public health: a global social media analysis. The American Journal of Tropical Medicine and Hygiene, 103. 1621-1629. https://dx.doi.org/10.4269%2Fajtmh.20-0812 DOI: https://doi.org/10.4269/ajtmh.20-0812
Kietzmann, J. H., Hermkens, K., McCarthy, I. P. y Silvestre, B. S. (2011). Social media? Get serious! Understanding the functional building blocks of social media. Business Horizons, 54, 241-251. https://bit.ly/3mGwujY DOI: https://doi.org/10.1016/j.bushor.2011.01.005
Kim, H. K., Ahn, J., Atkinson, L. y Kahlor, L.A. (2020). Effects of COVID-19 misinformation on information seeking, avoidance, and processing: a multi-country comparative study. Science Commun, 42. https://doi.org/10.1177/1075547020959670 DOI: https://doi.org/10.1177/1075547020959670
Knuutila, A., Neudert, L. y Howard, P. (2020). Global fears of disinformation: Perceived Internet and Social Media Harms in 142 countries, Oxford Internet Institute. The project on computational propaganda, diciembre, https://bit.ly/3FEoCXD
Kouzy, R., Abi Jaoude, J., Kraitem, A., El Alam, M. B., Karam, B., Adib, E., Zarka, J., Traboulsi, C., Akl, E. W. y Baddour, K. (2020). Coronavirus Goes Viral: Quantifying the COVID-19 Misinformation Epidemic on Twitter. Cureus, 12, https://doi.org/10.7759/cureus.7255 DOI: https://doi.org/10.7759/cureus.7255
Kummervold, P. E., Martin, S., Dada, S., Kilich, E., Denny, C., Paterson, P. y Larson, H. J. (2021). Categorizing Vaccine Confidence With a Transformer-Based Machine Learning Model: Analysis of Nuances of Vaccine Sentiment in Twitter Discourse. JMIR Medical Informatics, 9, https://doi.org/10.2196/29584 DOI: https://doi.org/10.2196/preprints.29584
Larrondo-Ureta, A., Fernández, S.-P., & Morales-i-Gras, J. (2021). Desinformación, vacunas y Covid-19. Análisis de la infodemia y la conversación digital en Twitter. Revista Latina de Comunicación Social, 79, 1-18. https://doi.org/10.4185/RLCS-2021-1504 DOI: https://doi.org/10.4185/RLCS-2021-1504
Loomba, Sahil, de Figueiredo, A., Piatek, S. J., de Graaf, K. y Larson, H. J. (2021). Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nature Human Behaviour, 5, 337-348. https://doi.org/10.1038/s41562-021-01056-1 DOI: https://doi.org/10.1038/s41562-021-01056-1
López-Martín, Á., Gómez-Calderón, B. y Córdoba-Cabús, A. (2021). Desinformación y verificación de datos. El caso de los bulos sobre la vacunación contra la Covid-19 en España. Revista Ibérica de Sistemas e Tecnologias de Informação, 431-443.
MacCartney, B. (2009). Natural language inference. Stanford University. https://bit.ly/3qsAtla
Mantzarlis, A. (2018). Fact-checking 101. 85-100. En Ireton, Cherilyn, y Posetti, Julie (eds). Journalism, ‘fake news’ and disinformation: Handbook for journalism education and training. Paris: Unesco. https://bit.ly/3pAWizZ
Martín, A., Huertas-Tato, J., Huertas-García, Á., Villar-Rodríguez, G. y Camacho, D. (2021). FacTeR-Check: Semi-automated fact-checking through Semantic Similarity and Natural Language Inference. arXiv preprint arXiv:2110.14532. https://bit.ly/32xKfux DOI: https://doi.org/10.1016/j.knosys.2022.109265
Morel, A.P.M. (2021). Negationism of the COVID-19 and popular health education: to beyond the necropolitics. Trabalho, Educação e Saúde, 19. https://doi.org/10.1590/1981-7746-sol00315 DOI: https://doi.org/10.1590/1981-7746-sol00315
Nowak, S. A., Chen, C., Parker, A. M., Gidengil, C. A. y Matthews, L. J. (2020). Comparing covariation among vaccine hesitancy and broader beliefs within Twitter and survey data. PloS One, 15. https://doi.org/10.1371/journal.pone.0239826 DOI: https://doi.org/10.1371/journal.pone.0239826
Pérez-Escolar, M. y Noguera-Vivo, J.M. (eds.) (2022). Hate speech and polarization in participatory society. Routledge. https://bit.ly/3FE8EwB DOI: https://doi.org/10.4324/9781003109891
Saby D. et al. (2021) Twitter Analysis of COVID-19 Misinformation in Spain. En Mohaisen D., Jin R. (eds.) Computational Data and Social Networks. CSoNet 2021. Lecture Notes in Computer Science, 13116. Springer. https://doi.org/10.1007/978-3-030-91434-9_24 DOI: https://doi.org/10.1007/978-3-030-91434-9_24
Salaverría, R., Buslón, N., López-Pan, F., León, B., López-Goñi, I. y Erviti, M.C. (2020). Desinformación en tiempos de pandemia: tipología de los bulos sobre la COVID-19. El Profesional de la Información, 29. https://doi.org/10.3145/epi.2020.may.15 DOI: https://doi.org/10.3145/epi.2020.may.15
Serrano-Puche, J. (2021). Digital desinformation and emotions: exploring the social risks of affective polarization. International Review of Sociology. 31, 231-245. https://10.1080/03906701.2021.1947953 DOI: https://doi.org/10.1080/03906701.2021.1947953
Subbaraman, N. (2021). This COVID-vaccine designer is tackling vaccine hesitancy-in churches and on Twitter. Nature, 377-377. https://doi.org/10.1038/d41586-021-00338-y DOI: https://doi.org/10.1038/d41586-021-00338-y
Shahi, G.; Dirkson, A. y Majchrzak, T. (2021): An exploratory study of COVID-19 misinformation on Twitter. Online Social Networks and Media, 22, https://doi.org/10.1016/j.osnem.2020.100104 DOI: https://doi.org/10.1016/j.osnem.2020.100104
Surian, D., Nguyen, D. Q., Kennedy, G., Johnson, M., Coiera, E. y Dunn, A. G. (2016). Characterizing Twitter discussions about HPV vaccines using topic modeling and community detection. Journal of Medical Internet Research, 18. https://doi.org/10.2196/jmir.6045 DOI: https://doi.org/10.2196/jmir.6045
Thelwall, M., Kousha, K. y Thelwall, S. (2021). COVID-19 vaccine hesitancy on English-language Twitter. El Profesional de la información, 30. https://doi.org/10.3145/epi.2021.mar.12 DOI: https://doi.org/10.3145/epi.2021.mar.12
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N. y Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 5998-6008. https://bit.ly/3pFbpYY
Yardi, S. y Boyd, D. (2010). Dynamic debates: An analysis of group polarization over time on twitter. Bulletin of Science, Technology & Society, 30, 316-327. https://doi.org/10.1177%2F0270467610380011 DOI: https://doi.org/10.1177/0270467610380011
Zhou, X., Coiera, E., Tsafnat, G., Arachi, D., Ong, M. S. y Dunn, A. G. (2015). Using social connection information to improve opinion mining: Identifying negative sentiment about HPV vaccines on Twitter. MEDINFO https://bit.ly/3mGQ2ow
Zucker, Jane R. et al., (2020). Consequences of Undervaccination — Measles Outbreak, New York City, 2018–2019. The New England Journal of Medicine. 382, 1009-1017. https://doi.org/10.1056/NEJMoa1912514 DOI: https://doi.org/10.1056/NEJMoa1912514
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 José Manuel Noguera, María del Mar Grandío-Pérez, Guillermo Villar-Rodríguez, Alejandro Martín, David Camacho
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.