Los Datos de X en la Investigación Científica: Tendencias y Desafíos
DOI:
https://doi.org/10.4185/rlcs-2025-2418Palabras clave:
redes sociales, X, tendencias, investigación, TwitterResumen
Introducción: El crecimiento de las redes sociales, especialmente X (antes Twitter), ha impulsado la investigación científica, destacándose como fuente valiosa de datos. Esta revisión analiza los factores clave que han favorecido su uso, las tendencias futuras y los desafíos para los investigadores. Metodología: La revisión, basada en una búsqueda sistemática en Scopus, adoptó un mapeo temático para identificar aplicaciones interdisciplinarias, innovaciones metodológicas y el impacto de eventos globales, con énfasis en el procesamiento del lenguaje natural (PLN) para el análisis de datos. Resultados: El PLN creció un 268% entre 2019 y 2023, consolidándose como herramienta clave. Sin embargo, entre 2021 y 2023 se observó una desaceleración en publicaciones basadas en X, mientras que Instagram y TikTok crecieron. X sigue siendo la plataforma más usada, aunque las restricciones de datos y el auge de nuevas plataformas podrían haber influido. Conclusiones: La investigación señala la necesidad de desarrollar técnicas de análisis más sofisticadas, integrar estándares éticos sobre privacidad y consentimiento, y fomentar enfoques interdisciplinarios en el uso de datos de redes sociales.
Descargas
Citas
Asur, S. y Huberman, B. A. (2010). Predicting the future with social media. HP Laboratories Technical Report, 53. Scopus. https://acortar.link/295pNj DOI: https://doi.org/10.1109/WI-IAT.2010.63
Blank, G. (2017). The Digital Divide Among Twitter Users and Its Implications for Social Research. Social Science Computer Review, 35(6), 679-697. https://doi.org/10.1177/0894439316671698 DOI: https://doi.org/10.1177/0894439316671698
Bluemke, E., Collins, T., Garfinkel, B. y Trask, A. (2023). Exploring the relevance of data Privacy-Enhancing technologies for AI governance use cases. arXiv preprint arXiv:2303.08956. https://doi.org/10.48550/ARXIV.2303.08956
Budiharto, W. y Meiliana, M. (2018). Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis. Journal of Big Data, 5(1). https://doi.org/10.1186/s40537-018-0164-1 DOI: https://doi.org/10.1186/s40537-018-0164-1
Cvetojevic, S. y Hochmair, H. H. (2018). Analyzing the spread of tweets in response to Paris attacks. Computers, Environment and Urban Systems, 71, 14-26. https://doi.org/10.1016/j.compenvurbsys.2018.03.010 DOI: https://doi.org/10.1016/j.compenvurbsys.2018.03.010
de Vreese, C. y Tromble, R. (2023). The Data Abyss: How Lack of Data Access Leaves Research and Society in the Dark. Political Communication, 40(3), 356-360. https://doi.org/10.1080/10584609.2023.2207488 DOI: https://doi.org/10.1080/10584609.2023.2207488
Dixon, S. J. (13 de septiembre de 2023). U.S. annual X/Twitter growth 2025. Statista. https://www.statista.com/statistics/238729/twitters-annual-growth-rate-in-the-us/
Efanova, E. V. (2023). Twitter diplomacy in shaping the foreign policy agenda of the United States of America during the presidency of D. Trump. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 4. Istoriya. Regionovedenie. Mezhdunarodnye otnosheniya, 28(3), 97-103. https://doi.org/10.15688/jvolsu4.2023.3.9 DOI: https://doi.org/10.15688/jvolsu4.2023.3.9
Fütterer, T., Fischer, C., Alekseeva, A., Chen, X., Tate, T., Warschauer, M. y Gerjets, P. (2023). ChatGPT in education: Global reactions to AI innovations. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-42227-6 DOI: https://doi.org/10.1038/s41598-023-42227-6
Ghosh, S., Fernandez, J. M. Z., González, I. Z., Calle, A. M. y Shaghaghi, N. (2023). Detecting Fake News Spreaders on Twitter Through Follower Networks. En R. Hou, H. Huang, D. Zeng, G. Xia, K. K. A. Ghany y H. M. Zawbaa (Eds.), Big Data Technologies and Applications. BDTA BDTA 2022 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Vol. 480, pp. 181-195). Springer, Cham. https://doi.org/10.1007/978-3-031-33614-0_13 DOI: https://doi.org/10.1007/978-3-031-33614-0_13
Henry, D., Stattner, E. y Collard, M. (2018). Information Propagation Routes between Countries in Social Media. En Companion Proceedings of the The Web Conference 2018 (WWW '18) (pp. 1295-1298). International World Wide Web Conferences Steering Committee. https://doi.org/10.1145/3184558.3191569 DOI: https://doi.org/10.1145/3184558.3191569
Hu, T., Wang, S., Luo, W., Zhang, M., Huang, X., Yan, Y., Liu, R., Ly, K., Kacker, V., She, B. y Li, Z. (2021). Revealing public opinion towards covid-19 vaccines with twitter data in the united states: Spatiotemporal perspective. Journal of Medical Internet Research, 23(9). https://doi.org/10.2196/30854 DOI: https://doi.org/10.2196/30854
Ioannides, G., Jadhav, A., Sharma, A., Navali, S. y Black, A. W. (2023). Compressed models for co-reference resolution: Enhancing efficiency with debiased word embeddings. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-45677-0 DOI: https://doi.org/10.1038/s41598-023-45677-0
Kim, A. E., Hansen, H. M., Murphy, J., Richards, A. K., Duke, J. y Allen, J. A. (2013). Methodological considerations in analyzing twitter data. Journal of the National Cancer Institute - Monographs, 47, 140-146. https://doi.org/10.1093/jncimonographs/lgt026 DOI: https://doi.org/10.1093/jncimonographs/lgt026
Maci, S., Demata, M., McGlashan, M. y Seargeant, P. (Eds.). (2024). The Routledge handbook of discourse and disinformation. Routledge. DOI: https://doi.org/10.4324/9781003224495
Mao, Y., Menchen-Trevino, E. y Cronin, J. (2023). Communicating environmental issues across media: An exploration of international news flows between twitter and traditional media. Journal of International Communication, 29(1), 39-61. https://doi.org/10.1080/13216597.2022.2149605 DOI: https://doi.org/10.1080/13216597.2022.2149605
Mazhar, K. y Dwivedi, P. (2024). Decoding the black box: LIME-assisted understanding of Convolutional Neural Network (CNN) in classification of social media tweets. Social Network Analysis and Mining, 14(1), 133. https://doi.org/10.1007/s13278-024-01297-8 DOI: https://doi.org/10.1007/s13278-024-01297-8
McLachlan, S. (7 de mayo de 2024). 19 X (Twitter) Demographics for Marketers in 2024. Hootsuite. https://blog.hootsuite.com/twitter-demographics/?utm_source=chatgpt.com
Nellore, N., Zimmer, M. y Apostol, B. (2023). Updating the Topology of Twitter Research: Towards A Systematic Review of Twitter Research from 2013-2022. En Companion Proceedings of the 2023 ACM International Conference on Supporting Group Work (GROUP '23) (pp. 4-5). Association for Computing Machinery. https://doi.org/10.1145/3565967.3570972 DOI: https://doi.org/10.1145/3565967.3570972
Nguyen, H.-D., Nguyen, D. Q., Nguyen, C.-D., To, P. T., Nguyen, D. H., Nguyen-Gia, H., Tran, L. H., Tran, A. Q., Dang-Hieu, A., Nguyen-Duc, A. y Quan, T. (2024). Supervised learning models for social bot detection: Literature review and benchmark. Expert Systems with Applications, 238. https://doi.org/10.1016/j.eswa.2023.122217 DOI: https://doi.org/10.1016/j.eswa.2023.122217
Dersan Orhan, D. (2021). Making Foreign Policy Through Twitter: An Analysis of Trump's Tweets on Iran. En E. Esiyok (Ed.), Handbook of Research on New Media Applications in Public Relations and Advertising (pp. 380-394). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-7998-3201-0.ch022 DOI: https://doi.org/10.4018/978-1-7998-3201-0.ch022
Pagolu, V. S., Reddy, K. N., Panda, G. y Majhi, B. (2017). Sentiment analysis of Twitter data for predicting stock market movements. En 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES) (pp. 1345-1350). IEEE. https://doi.org/10.1109/SCOPES.2016.7955659 DOI: https://doi.org/10.1109/SCOPES.2016.7955659
Raja, H., Ilyas, M. U., Saleh, S., Liu, A. X. y Radha, H. (2016). Detecting national political unrest on Twitter. En 2016 IEEE International Conference on Communications (ICC) (pp. 1-7). https://doi.org/10.1109/ICC.2016.7511393 DOI: https://doi.org/10.1109/ICC.2016.7511393
Rangel, F., Giachanou, A., Ghanem, B. y Rosso, P. (2020). Overview of the 8th Author Profiling Task at PAN 2020: Profiling Fake News Spreaders on Twitter. En CEUR workshop proceedings (Vol. 2696, pp. 1-18). Sun SITE Central Europe. https://acortar.link/RAgq5H
Rivadeneira, L. (2023). Análisis del comportamiento de decisión usando datos de Twitter: Una revisión de la literatura. Revista Ibérica de Sistemas e Tecnologias de Informação, E61, 307-321. https://acortar.link/kzucCg
Schroeder, R. y Cowls, J. (2019). Big Data Approaches to the Study of Digital Media. En J. Hunsinger, M. Allen y L. Klastrup (Eds.), Second International Handbook of Internet Research (pp. 957-977). https://doi.org/10.1007/978-94-024-1555-1_13 DOI: https://doi.org/10.1007/978-94-024-1555-1_13
Sinnenberg, L., Buttenheim, A. M., Padrez, K., Mancheno, C., Ungar, L. y Merchant, R. M. (2017). Twitter as a tool for health research: A systematic review. American Journal of Public Health, 107(1), e1-e8. https://doi.org/10.2105/AJPH.2016.303512 DOI: https://doi.org/10.2105/AJPH.2016.303512
Soaita, A. M., Serin, B. y Preece, J. (2020). A methodological quest for systematic literature mapping. International Journal of Housing Policy, 20(3), 320-343. https://doi.org/10.1080/19491247.2019.1649040 DOI: https://doi.org/10.1080/19491247.2019.1649040
Steinert-Threlkeld, Z. C. (2018). Twitter as data. Cambridge University Press. https://doi.org/10.1017/9781108529327 DOI: https://doi.org/10.1017/9781108529327
Wang, Z., Lam, N. S. N., Obradovich, N. y Ye, X. (2019). Are vulnerable communities digitally left behind in social responses to natural disasters? An evidence from Hurricane Sandy with Twitter data. Applied Geography, 108, 1-8. https://doi.org/10.1016/j.apgeog.2019.05.001 DOI: https://doi.org/10.1016/j.apgeog.2019.05.001
Weller, K. (2014). What do we get from twitter- and what not? A close look at twitter research in the social sciencest. Knowledge Organization, 41(3), 238-248. https://doi.org/10.5771/0943-7444-2014-3-238 DOI: https://doi.org/10.5771/0943-7444-2014-3-238
Yu, J. y Muñoz-Justicia, J. (2022). Free and Low-Cost Twitter Research Software Tools for Social Science. Social Science Computer Review, 40(1), 124-149. https://doi.org/10.1177/0894439320904318 DOI: https://doi.org/10.1177/0894439320904318
Yuan, Y. (2017). Modeling inter-country connection from geotagged news reports: A time-series analysis. En Y. Tan, H. Takagi y Y. Shi (Eds.) Data Mining and Big Data. DMBD 2017. Lecture Notes in Computer Science (Vol. 10387, pp.183-190). Springer, Cham. https://doi.org/10.1007/978-3-319-61845-6_19 DOI: https://doi.org/10.1007/978-3-319-61845-6_19
Zou, Y. y Herremans, D. (2023). PreBit — A multimodal model with Twitter FinBERT embeddings for extreme price movement prediction of Bitcoin. Expert Systems with Applications, 233. https://doi.org/10.1016/j.eswa.2023.120838 DOI: https://doi.org/10.1016/j.eswa.2023.120838
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Lucía Rivadeneira, Ignacio Loor

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.