X Data-Based Scientific Research: A Review of Trends and Challenges

Authors

DOI:

https://doi.org/10.4185/rlcs-2025-2418

Keywords:

social media, Twitter, X, research, trends

Abstract

Introduction: The growth of social media, especially X (formerly Twitter), has become a key resource for scientific research. This literature review identifies the factors driving its use, forecasts trends, and addresses challenges faced by researchers. Methodology: The review, based on a systematic search in Scopus, employed thematic mapping to identify interdisciplinary applications, methodological innovations, and the impact of global events. Key among these innovations was natural language processing (NLP) for data analysis, which grew 268% from 2019 to 2023. Results: NLP has established itself as a vital tool. However, publications based on X data showed a slowdown between 2021 and 2023, while Instagram and TikTok-based publications accelerated, signaling increased interest in these platforms. X remains the most used platform, followed by Facebook. Conclusions: The review highlights the need for more advanced analysis methods, stronger ethical standards concerning privacy and consent, and interdisciplinary approaches in social media research.

Downloads

Author Biographies

Lucía Rivadeneira, Universidad Técnica de Manabí

Lucía Rivadeneira holds a Ph.D. in Business and Management from the University of Manchester, United Kingdom; a Master's degree in Information Systems from Nanyang Technological University, Singapore; and a degree in Systems Engineering from the Technical University of Manabí, Ecuador. She is currently a lecturer and researcher at the Faculty of Computer Science, Technical University of Manabí, where she specializes in the analysis of social media data for modeling social phenomena. Her areas of interest include artificial intelligence, machine learning, unstructured data analysis, sentiment analysis, social network analysis, and classification and optimization models.

Ignacio Loor, Universidad Técnica de Manabí

Ignacio Loor holds a Ph.D. in Human Geography from the University of Manchester, United Kingdom; a Master's degree in International Business from Nova Southeastern University, United States; and an Economics degree from the Universidad Católica Santiago de Guayaquil, Ecuador. He currently works as a researcher in urbanism and sustainable development and as the Vice Dean of Research at the Faculty of Humanistic and Social Sciences at the Technical University of Manabí, Ecuador. His areas of interest include informal settlement infrastructure, green infrastructure, social organization of informal communities, informal practices, and the transition to net zero carbon emissions.

References

Asur, S. y Huberman, B. A. (2010). Predicting the future with social media. HP Laboratories Technical Report, 53. Scopus. https://acortar.link/295pNj DOI: https://doi.org/10.1109/WI-IAT.2010.63

Blank, G. (2017). The Digital Divide Among Twitter Users and Its Implications for Social Research. Social Science Computer Review, 35(6), 679-697. https://doi.org/10.1177/0894439316671698 DOI: https://doi.org/10.1177/0894439316671698

Bluemke, E., Collins, T., Garfinkel, B. y Trask, A. (2023). Exploring the relevance of data Privacy-Enhancing technologies for AI governance use cases. arXiv preprint arXiv:2303.08956. https://doi.org/10.48550/ARXIV.2303.08956

Budiharto, W. y Meiliana, M. (2018). Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis. Journal of Big Data, 5(1). https://doi.org/10.1186/s40537-018-0164-1 DOI: https://doi.org/10.1186/s40537-018-0164-1

Cvetojevic, S. y Hochmair, H. H. (2018). Analyzing the spread of tweets in response to Paris attacks. Computers, Environment and Urban Systems, 71, 14-26. https://doi.org/10.1016/j.compenvurbsys.2018.03.010 DOI: https://doi.org/10.1016/j.compenvurbsys.2018.03.010

de Vreese, C. y Tromble, R. (2023). The Data Abyss: How Lack of Data Access Leaves Research and Society in the Dark. Political Communication, 40(3), 356-360. https://doi.org/10.1080/10584609.2023.2207488 DOI: https://doi.org/10.1080/10584609.2023.2207488

Dixon, S. J. (13 de septiembre de 2023). U.S. annual X/Twitter growth 2025. Statista. https://www.statista.com/statistics/238729/twitters-annual-growth-rate-in-the-us/

Efanova, E. V. (2023). Twitter diplomacy in shaping the foreign policy agenda of the United States of America during the presidency of D. Trump. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 4. Istoriya. Regionovedenie. Mezhdunarodnye otnosheniya, 28(3), 97-103. https://doi.org/10.15688/jvolsu4.2023.3.9 DOI: https://doi.org/10.15688/jvolsu4.2023.3.9

Fütterer, T., Fischer, C., Alekseeva, A., Chen, X., Tate, T., Warschauer, M. y Gerjets, P. (2023). ChatGPT in education: Global reactions to AI innovations. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-42227-6 DOI: https://doi.org/10.1038/s41598-023-42227-6

Ghosh, S., Fernandez, J. M. Z., González, I. Z., Calle, A. M. y Shaghaghi, N. (2023). Detecting Fake News Spreaders on Twitter Through Follower Networks. En R. Hou, H. Huang, D. Zeng, G. Xia, K. K. A. Ghany y H. M. Zawbaa (Eds.), Big Data Technologies and Applications. BDTA BDTA 2022 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Vol. 480, pp. 181-195). Springer, Cham. https://doi.org/10.1007/978-3-031-33614-0_13 DOI: https://doi.org/10.1007/978-3-031-33614-0_13

Henry, D., Stattner, E. y Collard, M. (2018). Information Propagation Routes between Countries in Social Media. En Companion Proceedings of the The Web Conference 2018 (WWW '18) (pp. 1295-1298). International World Wide Web Conferences Steering Committee. https://doi.org/10.1145/3184558.3191569 DOI: https://doi.org/10.1145/3184558.3191569

Hu, T., Wang, S., Luo, W., Zhang, M., Huang, X., Yan, Y., Liu, R., Ly, K., Kacker, V., She, B. y Li, Z. (2021). Revealing public opinion towards covid-19 vaccines with twitter data in the united states: Spatiotemporal perspective. Journal of Medical Internet Research, 23(9). https://doi.org/10.2196/30854 DOI: https://doi.org/10.2196/30854

Ioannides, G., Jadhav, A., Sharma, A., Navali, S. y Black, A. W. (2023). Compressed models for co-reference resolution: Enhancing efficiency with debiased word embeddings. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-45677-0 DOI: https://doi.org/10.1038/s41598-023-45677-0

Kim, A. E., Hansen, H. M., Murphy, J., Richards, A. K., Duke, J. y Allen, J. A. (2013). Methodological considerations in analyzing twitter data. Journal of the National Cancer Institute - Monographs, 47, 140-146. https://doi.org/10.1093/jncimonographs/lgt026 DOI: https://doi.org/10.1093/jncimonographs/lgt026

Maci, S., Demata, M., McGlashan, M. y Seargeant, P. (Eds.). (2024). The Routledge handbook of discourse and disinformation. Routledge. DOI: https://doi.org/10.4324/9781003224495

Mao, Y., Menchen-Trevino, E. y Cronin, J. (2023). Communicating environmental issues across media: An exploration of international news flows between twitter and traditional media. Journal of International Communication, 29(1), 39-61. https://doi.org/10.1080/13216597.2022.2149605 DOI: https://doi.org/10.1080/13216597.2022.2149605

Mazhar, K. y Dwivedi, P. (2024). Decoding the black box: LIME-assisted understanding of Convolutional Neural Network (CNN) in classification of social media tweets. Social Network Analysis and Mining, 14(1), 133. https://doi.org/10.1007/s13278-024-01297-8 DOI: https://doi.org/10.1007/s13278-024-01297-8

McLachlan, S. (7 de mayo de 2024). 19 X (Twitter) Demographics for Marketers in 2024. Hootsuite. https://blog.hootsuite.com/twitter-demographics/?utm_source=chatgpt.com

Nellore, N., Zimmer, M. y Apostol, B. (2023). Updating the Topology of Twitter Research: Towards A Systematic Review of Twitter Research from 2013-2022. En Companion Proceedings of the 2023 ACM International Conference on Supporting Group Work (GROUP '23) (pp. 4-5). Association for Computing Machinery. https://doi.org/10.1145/3565967.3570972 DOI: https://doi.org/10.1145/3565967.3570972

Nguyen, H.-D., Nguyen, D. Q., Nguyen, C.-D., To, P. T., Nguyen, D. H., Nguyen-Gia, H., Tran, L. H., Tran, A. Q., Dang-Hieu, A., Nguyen-Duc, A. y Quan, T. (2024). Supervised learning models for social bot detection: Literature review and benchmark. Expert Systems with Applications, 238. https://doi.org/10.1016/j.eswa.2023.122217 DOI: https://doi.org/10.1016/j.eswa.2023.122217

Dersan Orhan, D. (2021). Making Foreign Policy Through Twitter: An Analysis of Trump's Tweets on Iran. En E. Esiyok (Ed.), Handbook of Research on New Media Applications in Public Relations and Advertising (pp. 380-394). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-7998-3201-0.ch022 DOI: https://doi.org/10.4018/978-1-7998-3201-0.ch022

Pagolu, V. S., Reddy, K. N., Panda, G. y Majhi, B. (2017). Sentiment analysis of Twitter data for predicting stock market movements. En 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES) (pp. 1345-1350). IEEE. https://doi.org/10.1109/SCOPES.2016.7955659 DOI: https://doi.org/10.1109/SCOPES.2016.7955659

Raja, H., Ilyas, M. U., Saleh, S., Liu, A. X. y Radha, H. (2016). Detecting national political unrest on Twitter. En 2016 IEEE International Conference on Communications (ICC) (pp. 1-7). https://doi.org/10.1109/ICC.2016.7511393 DOI: https://doi.org/10.1109/ICC.2016.7511393

Rangel, F., Giachanou, A., Ghanem, B. y Rosso, P. (2020). Overview of the 8th Author Profiling Task at PAN 2020: Profiling Fake News Spreaders on Twitter. En CEUR workshop proceedings (Vol. 2696, pp. 1-18). Sun SITE Central Europe. https://acortar.link/RAgq5H

Rivadeneira, L. (2023). Análisis del comportamiento de decisión usando datos de Twitter: Una revisión de la literatura. Revista Ibérica de Sistemas e Tecnologias de Informação, E61, 307-321. https://acortar.link/kzucCg

Schroeder, R. y Cowls, J. (2019). Big Data Approaches to the Study of Digital Media. En J. Hunsinger, M. Allen y L. Klastrup (Eds.), Second International Handbook of Internet Research (pp. 957-977). https://doi.org/10.1007/978-94-024-1555-1_13 DOI: https://doi.org/10.1007/978-94-024-1555-1_13

Sinnenberg, L., Buttenheim, A. M., Padrez, K., Mancheno, C., Ungar, L. y Merchant, R. M. (2017). Twitter as a tool for health research: A systematic review. American Journal of Public Health, 107(1), e1-e8. https://doi.org/10.2105/AJPH.2016.303512 DOI: https://doi.org/10.2105/AJPH.2016.303512

Soaita, A. M., Serin, B. y Preece, J. (2020). A methodological quest for systematic literature mapping. International Journal of Housing Policy, 20(3), 320-343. https://doi.org/10.1080/19491247.2019.1649040 DOI: https://doi.org/10.1080/19491247.2019.1649040

Steinert-Threlkeld, Z. C. (2018). Twitter as data. Cambridge University Press. https://doi.org/10.1017/9781108529327 DOI: https://doi.org/10.1017/9781108529327

Wang, Z., Lam, N. S. N., Obradovich, N. y Ye, X. (2019). Are vulnerable communities digitally left behind in social responses to natural disasters? An evidence from Hurricane Sandy with Twitter data. Applied Geography, 108, 1-8. https://doi.org/10.1016/j.apgeog.2019.05.001 DOI: https://doi.org/10.1016/j.apgeog.2019.05.001

Weller, K. (2014). What do we get from twitter- and what not? A close look at twitter research in the social sciencest. Knowledge Organization, 41(3), 238-248. https://doi.org/10.5771/0943-7444-2014-3-238 DOI: https://doi.org/10.5771/0943-7444-2014-3-238

Yu, J. y Muñoz-Justicia, J. (2022). Free and Low-Cost Twitter Research Software Tools for Social Science. Social Science Computer Review, 40(1), 124-149. https://doi.org/10.1177/0894439320904318 DOI: https://doi.org/10.1177/0894439320904318

Yuan, Y. (2017). Modeling inter-country connection from geotagged news reports: A time-series analysis. En Y. Tan, H. Takagi y Y. Shi (Eds.) Data Mining and Big Data. DMBD 2017. Lecture Notes in Computer Science (Vol. 10387, pp.183-190). Springer, Cham. https://doi.org/10.1007/978-3-319-61845-6_19 DOI: https://doi.org/10.1007/978-3-319-61845-6_19

Zou, Y. y Herremans, D. (2023). PreBit — A multimodal model with Twitter FinBERT embeddings for extreme price movement prediction of Bitcoin. Expert Systems with Applications, 233. https://doi.org/10.1016/j.eswa.2023.120838 DOI: https://doi.org/10.1016/j.eswa.2023.120838

Published

2025-03-20

How to Cite

Rivadeneira, L., & Loor, I. (2025). X Data-Based Scientific Research: A Review of Trends and Challenges. Revista Latina De Comunicación Social, (83), 1–14. https://doi.org/10.4185/rlcs-2025-2418

Issue

Section

Miscellaneous