Disinformation, vaccines and Covid-19. Analysis of the infodemia and the digital conversation in Twitter

Authors

DOI:

https://doi.org/10.4185/RLCS-2021-1504

Keywords:

Disinformation, vaccines, Covid-19, social media, Twitter, infodemic.

Abstract

Introduction: The debate on the Covid-19 vaccines has been very present on social networks since the very beginning of the health crisis, in a context of infodemics in which the presence of all kinds of information has been a breeding ground for misinformation or false news. Methodology: In this context, this article seeks to measure and characterise the conversation about Covid-19 vaccines on the social network Twitter. To this end, 62,045 tweets and 258,843 retweets from supporters and opponents of the vaccine were analysed between December 2020 and February 2021. Results: The start of the vaccination campaign was the turning point at which pro-vaccine discourse began to take precedence over anti-vaccine discourse. Antivaccine groups are characterised by being strongly cohesive clusters, with an appreciable level of activity, but with less capacity to viralise content. Conclusions and discussion: Anti-vaccine discourses tend to rely on alternative media or content shared on social networks, which corroborates that quality information is one of the main measures against disinformation. It also highlights the role of quality or legacy media and the desirability of further developing anti-disinformation policies specific to the type of digital conversation taking place on Twitter.

Downloads

Download data is not yet available.

Author Biographies

Ainara Larrondo-Ureta, University of the Basque Country/Euskal Herriko Unibertsitatea

Department of Journalism. Faculty of Social Sciences and Communication. University of the Basque Country/Euskal Herriko Unibertsitatea. Doctor in Journalism, Master in Contemporary History. Trilingual University Professor (bas, spa, eng) in subjects on Journalistic Writing and Digital Communication. She directs ‘Gureiker’, Consolidated Group of the Basque University System (IT1112-16, A) (2016/2021). She is the MR of three UPV/EHU projects, two of them linked to Educational Innovation, and a research member of more than a dozen projects financed by the State Research Agency (AEI), the Basque Government, and other public bodies. Visiting Researcher at the University of Glasgow, she has taught at European universities in Italy, Holland, and Portugal (PAP Erasmus Program). She is the author of numerous impact articles (JCR, Scopus, FECYT) and other publications. In the field of academic management, she has developed, among others, tasks as Vice Dean of Infrastructures (2015/2021).

Simón-Peña Fernández, University of the Basque Country/Euskal Herriko Unibertsitatea

Department of Journalism. Faculty of Social Sciences and Communication. University of the Basque Country/Euskal Herriko Unibertsitatea. Doctor in Journalism. Trilingual associate professor (bas, spa, eng). His main lines of research are cyberjournalism, Internet communication, and social innovation. He has published fifty articles in academic journals, always associated with continued participation in about twenty research projects funded in competitive public calls, among them, seven European projects (Horizon 2020 and Erasmus+) and three National Plan projects, among others. . He is the co-main researcher of the consolidated group Gureiker.

Jordi Morales-i-Gras, University of the Basque Country/Euskal Herriko Unibertsitatea

Faculty of Social Sciences and Communication. University of the Basque Country/Euskal Herriko Unibertsitatea. CEO Network Outsight. Doctor in Sociology from the University of the Basque Country (UPV/EHU). His area of specialization is Computational Social Science, with a strong emphasis on Social Network Analysis and Artificial Intelligence. He collaborates as a teacher in the Master of Models and Areas of Social Research of the UPV/EHU, in the Master of Social Media of the UOC, and the Postgraduate degree in Data Analytics of the College of Professionals in Political Science and Sociology of Catalonia. He is also the founder and CEO of Network Outsight, a consulting firm specializing in the sociological analysis of Big Data.

References

Bennet, W.L y Livingston, S. (2018). The desinformation order. Disruptive communication and the decline of democratic institutions. European Journal of Communication, 33(2), 122-1399. https://doi.org/10.1177/0267323118760317

Blondel, V. D., Guillaume, J. L., Lambiotte, R., y Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, P10008. http://dx.doi.org/10.1088/1742-5468/2008/10/P10008

Brennen, J. S., Simon, F. M., Howard, P. N., y Nielsen, R. K. (2020). Types, Sources, and Claims of COVID-19 Misinformation. Reuters Institute for the Study of Journalism. http://www.primaonline.it/wp-content/uploads/2020/04/COVID-19_reuters.pdf

Broniatowski, D. A., Jamison, A. M., Qi, S.; AlKulaib, L., Chen, T., Benton, A., y Quinn, S. C.; Dredze, M. (2018). Weaponized health communication: Twitter bots and Russian trolls amplify the vaccine debate. American journal of public health, 108(10), 1378-1384. https://doi.org/10.2105/AJPH.2018.304567

Cafiero, F., Guille-Escuret, P., y Ward, J. K. (2020). ‘I’m not an antivaxxer, but...’: Spurious and authentic diversity among vaccine critical activists. Social networks, 65, 63-70. https://doi.org/10.1016/j.socnet.2020.11.004

Cardenal, A. S., Aguilar-Paredes, C., Cristancho, C., y Majó-Vázquez, S. (2019). Echo-chambers in online news consumption: Evidence from survey and navigation data in Spain. European Journal of Communication, 34(4), 360-376. https://doi.org/10.1177/0267323119844409

Centro de Investigaciones Sociológicas (CIS) (2021). Barómetro de febrero de 2021. Estudio nº 3309. Madrid: Centro de Investigaciones Sociológicas. http://datos.cis.es/pdf/Es3309marMT_A.pdf

Chadwick, A. (2013). The Hybrid Media System: Politics and Power. Oxford: Oxford University Press.

Chanel, O., Luchini, S., Massoni, S., y Vergnaud, J. C. (2011). Impact of information on intentions to vaccinate in a potential epidemic: Swine-origin Influenza A (H1N1). Social Science & Medicine, 72(2), 142-148. https://doi.org/10.1016/j.socscimed.2010.11.018

Cuesta-Cambra, U., Martínez Martínez, L., y Niño-González, J.I. (2019). Análisis de la información pro vacunas y anti vacunas en redes sociales e internet. Patrones visuales y emocionales. Profesional De La Información, 28(2). https://doi.org/10.3145/epi.2019.mar.17

Dredze, M., Broniatowski, D. A., Smith, M. C., y Hilyard, K. M. (2016). Understanding Vaccine Refusal: Why We Need Social Media Now. American journal of preventive medicine, 50(4), 550–552. https://doi.org/10.1016/j.amepre.2015.10.002

Hallin, D., y Mancini, P (2004). Comparing Media Systems: Three Models of Press and Politics, Cambridge: Cambridge University Press.

Getman, R., Helmi, M., Roberts, H., Yansane, A., Cutler, D., y Seymour, B. (2018). Vaccine hesitancy and online information: the influence of digital networks. Health Education Behaviour, 45(4), 599-606.

Gutiérrez-Coba, L., Coba-Gutiérrez, P., y Gómez-Diaz, J. A. (2020). Las noticias falsas y desinformación sobre el Covid-19: análisis comparativo de seis países iberoamericanos. Revista Latina, 78, 237-264. https://doi.org/10.4185/RLCS-2020-1476

Huesch, M., Ver-Steeg, G., y Galstyan, A. (2013). “Vaccination (anti-) campaigns in social media”. Workshops at the Twenty-Seventh AAAI Conference on Artificial Intelligence, 31-34. https://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/viewFile/7094/6502

Kang, G. J., Ewing-Nelson, S. R., Mackey, L., Schlitt, J. T., Marathe, A., Abbas, K. M., y Swarup, S. (2017). Semantic network analysis of vaccine sentiment in online social media. Vaccine, 35(29), 3621-3638. https://doi.org/10.1016/j.vaccine.2017.05.052.

Larson, H. J., Jarrett, C., Eckersberger, E., Smith, D., y Paterson, P. (2014). Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: A systematic review of published literature, 2007-2012. Vaccine, 32(19), 2150-2159. https://doi.org/10.1016/j.vaccine.2014.01.081

Liu, F., Wayne T., Zipprich, J., Blumberg, S., Harriman, K., Ackley, S., Wheaton, W., Allpress, J., y Porco, T. (2015). The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California. BMC public health, 15(1). https://doi.org/10.1186/s12889-015-1766-6

Masip, P., Aran-Ramspott, S., Ruiz-Caballero, C., Suau, J., Almenar, E., y Puertas-Graell, D. (2020). Consumo informativo y cobertura mediática durante el confinamiento por la COVID-19: sobreinformación, sesgo ideológico y sensacionalismo. El Profesional de la Información, 29(3), 1-12. https://bit.ly/3j8odm7

Mena, G., Velasco, C., García-Basteiro, A.L., Barreales, S., Bravo-Acuña, J, Merino-Moína, M., Bayas, J.M., y Álvarez-Pasquín, M.J. (2014). Papel de las redes sociales en la difusión de información sobre vacunas. Revista Vacunas, 15(1-2): 21-28.

Muñiz, C. (2020). Media System Dependency and Change in Risk Perception during the COVID-19 Pandemic 11. Tripodos, 1(47), 11-26. https://bit.ly/3pGRGG1

Newman, M.E.J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577-8582. https://doi.org/10.1073/pnas.0601602103

Newman, N., Fletcher, R., Schulz, A.; Andı, S., y Nielsen, R.K. (2020). Reuters Institute Digital News Report 2020. https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2020-06/DNR_2020_FINAL.pdf

Palpan-Guerra, A., y Munayco, C. V. (2015). How did the media report on the AH1N1 influenza in Peru? Revista Peruana de Medicina Experimental y Salud Publica, 32(2), 294-298. https://doi.org/10.17843/rpmesp.2015.322.1

Pérez-Dasilva, J., Meso-Ayerdi, K., y Mendiguren-Galdospín, T. (2020). Fake news y coronavirus: detección de los principales actores y tendencias a través del análisis de las conversaciones en Twitter. Profesional de la Información, 29(3). https://doi.org/10.3145/epi.2020.may.08

Salathé, M., y Bonhoeffer, S. (2008). The effect of opinion clustering on disease outbreaks. Journal of The Royal Society Interface, 5(29), 1505-1508.https://doi.org/10.1098/rsif.2008.0271

Salaverría, R., Buslón, N., López-Pan, F., León, B., López-Goñi, I., y Erviti, M.-C. (2020). Desinformación en tiempos de pandemia: Tipología de los bulos sobre la Covid-19. Profesional de la Información, 29(3) e290315. https://doi.org/10.3145/epi.2020.may.15

Sharevski, F., Jachim, P., Florek, K. (2020). To tweet or not to tweet: Covertly manipulating a Twitter debate on vaccines using malware-induced misperceptions. https://arxiv.org/abs/2003.12093

Tandoc, E. C., Lim, Z. W., y Ling, R. (2018). Defining “Fake News”: A typology of scholarly definitions. Digital Journalism, 6(2), 137-153. https://doi.org/10.1080/21670811.2017.1360143

Thelwall, M.; Kousha, K.; Thelwall, S. (2021). “Covid-19 vaccine hesitancy on English-language Twitter”. Profesional de la información, 30(2), 1-13. https://doi.org/10.3145/epi.2021.mar.12

Twitter (2020). https://twitter.com/TwitterEspana/status/1253004640771362817

Twitter (2021). Nuestra labor sobre la desinformación de la vacuna contra COVID-19. https://blog.twitter.com/es_la/topics/company/2021/actualizamos-nuestra-labor-sobre-desinformacion-vacuna-contra-covid-19.html

Wardle, C. (2017). Fake news. It’s complicated. First Draft. https://firstdraftnews.org:443/latest/fake-news-complicated/

Wardle, C., y Singerman E. (2021). Too little, too late: social media companies’ failure to tackle vaccine misinformation poses a real threat. BMJ, 372(26). http://doi.org/10.1136/bmj.n26

Wilson, K., y Keelan, J. (203). Social media and the empowering of ooponents of medical technologies: the case of anti-vaccinationism. Journal of Medical Internet Research, 15(5).

Wilson, K., Atkinson, K., y Deeks, S. (2014). “Opportunities for utilizing new technologies to increase vaccine confidence”. Expert review of vaccines, v. 13, n. 8, pp. 969-977. https://doi.org/10.1586/14760584.2014.928208

Witteman, H. O., y Zikmund-Fisher, B. J. (2012). The defining characteristics of Web 2.0 and their potential influence in the online vaccination debate. Vaccine, 30(25), 3734-3740. https://doi.org/10.1016/j.vaccine.2011.12.039

Zarocostas, J. (2020). How to fight an infodemic. The Lancet, 395(10225), 676.

Zimmerman, R., Wolfe, R., Fox, D., Fox, J., Nowalk, M., Troy, J., y Sharp, L. (2005). Vaccine criticism on the World Wide Web. Journal of medical internet research, 7(2) https://doi.org/10.2196/jmir.7.2.e17

Published

2021-06-07

How to Cite

Larrondo-Ureta, A., Fernández, S.-P. ., & Morales-i-Gras, J. . (2021). Disinformation, vaccines and Covid-19. Analysis of the infodemia and the digital conversation in Twitter. Revista Latina De Comunicación Social, (79), 1–18. https://doi.org/10.4185/RLCS-2021-1504

Issue

Section

Fake news and hoaxes: validating communication as a social urgency