Disinformation, vaccines and Covid-19. Analysis of the infodemia and the digital conversation in Twitter
DOI:
https://doi.org/10.4185/RLCS-2021-1504Keywords:
Disinformation, vaccines, Covid-19, social media, Twitter, infodemic.Abstract
Introduction: The debate on the Covid-19 vaccines has been very present on social networks since the very beginning of the health crisis, in a context of infodemics in which the presence of all kinds of information has been a breeding ground for misinformation or false news. Methodology: In this context, this article seeks to measure and characterise the conversation about Covid-19 vaccines on the social network Twitter. To this end, 62,045 tweets and 258,843 retweets from supporters and opponents of the vaccine were analysed between December 2020 and February 2021. Results: The start of the vaccination campaign was the turning point at which pro-vaccine discourse began to take precedence over anti-vaccine discourse. Antivaccine groups are characterised by being strongly cohesive clusters, with an appreciable level of activity, but with less capacity to viralise content. Conclusions and discussion: Anti-vaccine discourses tend to rely on alternative media or content shared on social networks, which corroborates that quality information is one of the main measures against disinformation. It also highlights the role of quality or legacy media and the desirability of further developing anti-disinformation policies specific to the type of digital conversation taking place on Twitter.
Downloads
References
Bennet, W.L y Livingston, S. (2018). The desinformation order. Disruptive communication and the decline of democratic institutions. European Journal of Communication, 33(2), 122-1399. https://doi.org/10.1177/0267323118760317
Blondel, V. D., Guillaume, J. L., Lambiotte, R., y Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, P10008. http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
Brennen, J. S., Simon, F. M., Howard, P. N., y Nielsen, R. K. (2020). Types, Sources, and Claims of COVID-19 Misinformation. Reuters Institute for the Study of Journalism. http://www.primaonline.it/wp-content/uploads/2020/04/COVID-19_reuters.pdf
Broniatowski, D. A., Jamison, A. M., Qi, S.; AlKulaib, L., Chen, T., Benton, A., y Quinn, S. C.; Dredze, M. (2018). Weaponized health communication: Twitter bots and Russian trolls amplify the vaccine debate. American journal of public health, 108(10), 1378-1384. https://doi.org/10.2105/AJPH.2018.304567
Cafiero, F., Guille-Escuret, P., y Ward, J. K. (2020). ‘I’m not an antivaxxer, but...’: Spurious and authentic diversity among vaccine critical activists. Social networks, 65, 63-70. https://doi.org/10.1016/j.socnet.2020.11.004
Cardenal, A. S., Aguilar-Paredes, C., Cristancho, C., y Majó-Vázquez, S. (2019). Echo-chambers in online news consumption: Evidence from survey and navigation data in Spain. European Journal of Communication, 34(4), 360-376. https://doi.org/10.1177/0267323119844409
Centro de Investigaciones Sociológicas (CIS) (2021). Barómetro de febrero de 2021. Estudio nº 3309. Madrid: Centro de Investigaciones Sociológicas. http://datos.cis.es/pdf/Es3309marMT_A.pdf
Chadwick, A. (2013). The Hybrid Media System: Politics and Power. Oxford: Oxford University Press.
Chanel, O., Luchini, S., Massoni, S., y Vergnaud, J. C. (2011). Impact of information on intentions to vaccinate in a potential epidemic: Swine-origin Influenza A (H1N1). Social Science & Medicine, 72(2), 142-148. https://doi.org/10.1016/j.socscimed.2010.11.018
Cuesta-Cambra, U., Martínez Martínez, L., y Niño-González, J.I. (2019). Análisis de la información pro vacunas y anti vacunas en redes sociales e internet. Patrones visuales y emocionales. Profesional De La Información, 28(2). https://doi.org/10.3145/epi.2019.mar.17
Dredze, M., Broniatowski, D. A., Smith, M. C., y Hilyard, K. M. (2016). Understanding Vaccine Refusal: Why We Need Social Media Now. American journal of preventive medicine, 50(4), 550–552. https://doi.org/10.1016/j.amepre.2015.10.002
Hallin, D., y Mancini, P (2004). Comparing Media Systems: Three Models of Press and Politics, Cambridge: Cambridge University Press.
Getman, R., Helmi, M., Roberts, H., Yansane, A., Cutler, D., y Seymour, B. (2018). Vaccine hesitancy and online information: the influence of digital networks. Health Education Behaviour, 45(4), 599-606.
Gutiérrez-Coba, L., Coba-Gutiérrez, P., y Gómez-Diaz, J. A. (2020). Las noticias falsas y desinformación sobre el Covid-19: análisis comparativo de seis países iberoamericanos. Revista Latina, 78, 237-264. https://doi.org/10.4185/RLCS-2020-1476
Huesch, M., Ver-Steeg, G., y Galstyan, A. (2013). “Vaccination (anti-) campaigns in social media”. Workshops at the Twenty-Seventh AAAI Conference on Artificial Intelligence, 31-34. https://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/viewFile/7094/6502
Kang, G. J., Ewing-Nelson, S. R., Mackey, L., Schlitt, J. T., Marathe, A., Abbas, K. M., y Swarup, S. (2017). Semantic network analysis of vaccine sentiment in online social media. Vaccine, 35(29), 3621-3638. https://doi.org/10.1016/j.vaccine.2017.05.052.
Larson, H. J., Jarrett, C., Eckersberger, E., Smith, D., y Paterson, P. (2014). Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: A systematic review of published literature, 2007-2012. Vaccine, 32(19), 2150-2159. https://doi.org/10.1016/j.vaccine.2014.01.081
Liu, F., Wayne T., Zipprich, J., Blumberg, S., Harriman, K., Ackley, S., Wheaton, W., Allpress, J., y Porco, T. (2015). The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California. BMC public health, 15(1). https://doi.org/10.1186/s12889-015-1766-6
Masip, P., Aran-Ramspott, S., Ruiz-Caballero, C., Suau, J., Almenar, E., y Puertas-Graell, D. (2020). Consumo informativo y cobertura mediática durante el confinamiento por la COVID-19: sobreinformación, sesgo ideológico y sensacionalismo. El Profesional de la Información, 29(3), 1-12. https://bit.ly/3j8odm7
Mena, G., Velasco, C., García-Basteiro, A.L., Barreales, S., Bravo-Acuña, J, Merino-Moína, M., Bayas, J.M., y Álvarez-Pasquín, M.J. (2014). Papel de las redes sociales en la difusión de información sobre vacunas. Revista Vacunas, 15(1-2): 21-28.
Muñiz, C. (2020). Media System Dependency and Change in Risk Perception during the COVID-19 Pandemic 11. Tripodos, 1(47), 11-26. https://bit.ly/3pGRGG1
Newman, M.E.J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577-8582. https://doi.org/10.1073/pnas.0601602103
Newman, N., Fletcher, R., Schulz, A.; Andı, S., y Nielsen, R.K. (2020). Reuters Institute Digital News Report 2020. https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2020-06/DNR_2020_FINAL.pdf
Palpan-Guerra, A., y Munayco, C. V. (2015). How did the media report on the AH1N1 influenza in Peru? Revista Peruana de Medicina Experimental y Salud Publica, 32(2), 294-298. https://doi.org/10.17843/rpmesp.2015.322.1
Pérez-Dasilva, J., Meso-Ayerdi, K., y Mendiguren-Galdospín, T. (2020). Fake news y coronavirus: detección de los principales actores y tendencias a través del análisis de las conversaciones en Twitter. Profesional de la Información, 29(3). https://doi.org/10.3145/epi.2020.may.08
Salathé, M., y Bonhoeffer, S. (2008). The effect of opinion clustering on disease outbreaks. Journal of The Royal Society Interface, 5(29), 1505-1508.https://doi.org/10.1098/rsif.2008.0271
Salaverría, R., Buslón, N., López-Pan, F., León, B., López-Goñi, I., y Erviti, M.-C. (2020). Desinformación en tiempos de pandemia: Tipología de los bulos sobre la Covid-19. Profesional de la Información, 29(3) e290315. https://doi.org/10.3145/epi.2020.may.15
Sharevski, F., Jachim, P., Florek, K. (2020). To tweet or not to tweet: Covertly manipulating a Twitter debate on vaccines using malware-induced misperceptions. https://arxiv.org/abs/2003.12093
Tandoc, E. C., Lim, Z. W., y Ling, R. (2018). Defining “Fake News”: A typology of scholarly definitions. Digital Journalism, 6(2), 137-153. https://doi.org/10.1080/21670811.2017.1360143
Thelwall, M.; Kousha, K.; Thelwall, S. (2021). “Covid-19 vaccine hesitancy on English-language Twitter”. Profesional de la información, 30(2), 1-13. https://doi.org/10.3145/epi.2021.mar.12
Twitter (2020). https://twitter.com/TwitterEspana/status/1253004640771362817
Twitter (2021). Nuestra labor sobre la desinformación de la vacuna contra COVID-19. https://blog.twitter.com/es_la/topics/company/2021/actualizamos-nuestra-labor-sobre-desinformacion-vacuna-contra-covid-19.html
Wardle, C. (2017). Fake news. It’s complicated. First Draft. https://firstdraftnews.org:443/latest/fake-news-complicated/
Wardle, C., y Singerman E. (2021). Too little, too late: social media companies’ failure to tackle vaccine misinformation poses a real threat. BMJ, 372(26). http://doi.org/10.1136/bmj.n26
Wilson, K., y Keelan, J. (203). Social media and the empowering of ooponents of medical technologies: the case of anti-vaccinationism. Journal of Medical Internet Research, 15(5).
Wilson, K., Atkinson, K., y Deeks, S. (2014). “Opportunities for utilizing new technologies to increase vaccine confidence”. Expert review of vaccines, v. 13, n. 8, pp. 969-977. https://doi.org/10.1586/14760584.2014.928208
Witteman, H. O., y Zikmund-Fisher, B. J. (2012). The defining characteristics of Web 2.0 and their potential influence in the online vaccination debate. Vaccine, 30(25), 3734-3740. https://doi.org/10.1016/j.vaccine.2011.12.039
Zarocostas, J. (2020). How to fight an infodemic. The Lancet, 395(10225), 676.
Zimmerman, R., Wolfe, R., Fox, D., Fox, J., Nowalk, M., Troy, J., y Sharp, L. (2005). Vaccine criticism on the World Wide Web. Journal of medical internet research, 7(2) https://doi.org/10.2196/jmir.7.2.e17