Análisis de las aplicaciones de la Inteligencia Artificial Generativa en sectores estratégicos: Una revisión de literatura
DOI:
https://doi.org/10.4185/rlcs-2025-2466Palabras clave:
IA generativa, inteligencia artificial, redes generativas antagónicas, modelos de lenguaje, redes sociales, personalización, sostenibilidad, éticaResumen
Introducción: La Inteligencia Artificial Generativa (IAG) es una tecnología disruptiva que crea datos imitando patrones reales, transformando sectores estratégicos como salud, educación, comunicación, finanzas, transporte y comunicación. Este estudio aborda tres preguntas clave: ¿Cuáles son sus principales aplicaciones?, ¿Qué beneficios aporta?, y ¿Qué desafíos implica? A partir del análisis de 7.902 artículos publicados entre 2020 y 2024, se seleccionaron 198 estudios que destacan tanto sus aplicaciones prácticas como sus retos. Metodología: La investigación se realizó siguiendo la metodología PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), utilizando bases de datos como ACM Digital Library, IEEE Xplore, ScienceDirect y Web of Science. Herramientas como VOSviewer y Scimat ayudaron a identificar patrones de co-citación y evolución temática. El análisis se centró en tecnologías clave como redes generativas antagónicas (GANs) y modelos de lenguaje. Resultados: La IAG tiene aplicaciones transformadoras: en educación, personaliza el aprendizaje con tutorías virtuales y contenidos adaptativos; en salud, mejora simulaciones clínicas y acelera el desarrollo de medicamentos; en transporte, optimiza rutas y sostenibilidad; en marketing, facilita segmentación precisa y generación de contenido creativo y en comunicación, la IAG revoluciona las dinámicas interpersonales y organizacionales al mejorar la toma de decisiones en tiempo real, automatizar la generación de textos y optimizar la interacción entre humanos y máquinas. Estas aplicaciones han impulsado la eficiencia y la innovación en múltiples sectores. Discusión: La adopción de la IAG es un motor de progreso tecnológico, marcando avances en personalización y optimización operativa. Su impacto podría diversificarse al adaptar aplicaciones a contextos locales y sectores emergentes, maximizando su alcance y beneficios. Conclusiones: La IAG se consolida como una herramienta clave para el desarrollo sostenible e inclusivo. Este estudio ofrece una base para futuras investigaciones, promoviendo aplicaciones innovadoras que transformen sectores estratégicos de manera efectiva y global.
Descargas
Citas
Alzubaidi, L., Bai, J., Al-Sabaawi, A., Santamaría, J., Albahri, A. S., Al-Dabbagh, B. S. N., Fadhel, M. A., Manoufali, M., Zhang, J., Al-Timemy, A. H., Duan, Y., Abdullah, A., Farhan, L., Lu, Y., Gupta, A., Albu, F., Abbosh, A. y Gu, Y. (2023). A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. Journal of Big Data, 10(46). https://doi.org/10.1186/s40537-023-00727-2 DOI: https://doi.org/10.1186/s40537-023-00727-2
Baowaly, M. K., Lin, C. C., Liu, C. L. y Chen, K. T. (2019). Synthesizing electronic health records using improved generative adversarial networks. Journal of the American Medical Informatics Association, 26(3), 228-241. https://doi.org/10.1093/jamia/ocy142 DOI: https://doi.org/10.1093/jamia/ocy142
Bertsimas, D., O'Hair, A., Relyea, S. y Silberholz, J. (2016). An analytics approach to designing combination chemotherapy regimens for cancer. Management Science, 62(5), 1511-1531. https://doi.org/10.1287/mnsc.2015.2363 DOI: https://doi.org/10.1287/mnsc.2015.2363
Boscardin, C. K., Gin, B., Golde, P. B. y Hauer, K. E. (2024). ChatGPT and generative artificial intelligence for medical education: potential impact and opportunity. Academic Medicine, 99(1), 22-27. https://doi.org/10.1097/ACM.0000000000005439 DOI: https://doi.org/10.1097/ACM.0000000000005439
Campbell, C., Plangger, K., Sands, S. y Kietzmann, J. (2022). Preparing for an era of deepfakes and AI-generated ads: A framework for understanding responses to manipulated advertising. Journal of Advertising, 51(1), 22-38. https://doi.org/10.1080/00913367.2021.1909515 DOI: https://doi.org/10.1080/00913367.2021.1909515
Carbonell-Alcocer, A., Sanchez-Acedo, A., Benitez-Aranda, N. y Gertrudix, M. (2025). Impacto de la Inteligencia Artificial Generativa en la eficiencia, calidad e innovación en la producción de Recursos Educativos Abiertos para MOOCS. Comunicación y Sociedad, 1-31. https://doi.org/10.32870/cys.v2025.8784 DOI: https://doi.org/10.32870/cys.v2025.8784
Cooper, G. (2023). Examining science education in ChatGPT: An exploratory study of generative artificial intelligence. Journal of Science Education and Technology, 32(3), 444-452. https://doi.org/10.1007/s10956-023-10039-y DOI: https://doi.org/10.1007/s10956-023-10039-y
Dumas, J., Wehenkel, A., Lanaspeze, D., Cornélusse, B. y Sutera, A. (2022). A deep generative model for probabilistic energy forecasting in power systems: Normalizing flows. Applied Energy, 305. https://doi.org/10.1016/j.apenergy.2021.117871 DOI: https://doi.org/10.1016/j.apenergy.2021.117871
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kumar Kar, A., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H. l., Albashrawi, M. A., Al-Busaidi, A. S., Janarthanan Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D.,… Wright, R. (2023). So what if ChatGPT wrote it? Multidisciplinary perspectives on opportunities, challenges, and implications of generative conversational AI for research, practice, and policy. International Journal of Information Management, 71. https://doi.org/10.1016/j.ijinfomgt.2023.102642 DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102642
Friederichs, H., Friederichs, W. J. y März, M. (2023). ChatGPT in medical school: How successful is AI in progress testing? Medical Education Online, 28(1). https://doi.org/10.1080/10872981.2023.2220920 DOI: https://doi.org/10.1080/10872981.2023.2220920
Getchell, K. M., Carradini, S., Cardon, P. W., Fleischmann, C., Ma, H., Aritz, J. y Stapp, J. (2022). Artificial Intelligence in Business Communication: The Changing Landscape of Research and Teaching. Business and Professional Communication Quarterly, 85(1), 7-33. https://doi.org/10.1177/23294906221074311 DOI: https://doi.org/10.1177/23294906221074311
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. y Bengio, Y. (2014). Generative Adversarial Nets. Advances in Neural Information Processing Systems, 27. https://proceedings.neurips.cc/paper_files/paper/2014/hash/f033ed80deb0234979a61f95710dbe25-Abstract.html
Gupta, R., Srivastava, D. y Kumar, P. (2021). Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Molecular Diversity, 25(3), 1315-1360. https://doi.org/10.1007/s11030-021-10217-3 DOI: https://doi.org/10.1007/s11030-021-10217-3
Gupta, B., Mufti, T., Sohail, S. S. y Madsen, D. Ø. (2023). ChatGPT: A brief narrative review. Cogent Business & Management, 10(3), 2275851. https://doi.org/10.1080/23311975.2023.2275851 DOI: https://doi.org/10.1080/23311975.2023.2275851
Guzman, A. L. y Lewis, S. C. (2019). Artificial intelligence and communication: A human–machine communication research agenda. New Media & Society, 22(1), 70-86. https://doi.org/10.1177/1461444819858691 DOI: https://doi.org/10.1177/1461444819858691
Hohenstein, J., Kizilcec, R. F., DiFranzo, D., Aghajari, Z., Mieczkowski, H., Levy, K., Naaman, M., Hancock, J. y Jung, M. F. (2023). Artificial intelligence in communication impacts language and social relationships. Scientific Reports, 13(5487). https://doi.org/10.1038/s41598-023-30938-9 DOI: https://doi.org/10.1038/s41598-023-30938-9
Jeon, J. y Lee, S. Y. (2023). Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT. Education and Information Technologies, 28(12), 15873-15892. https://doi.org/10.1007/s10639-023-11834-1 DOI: https://doi.org/10.1007/s10639-023-11834-1
Kanbach, D. K., Heiduk, L., Blueher, G., Schreiter, M. y Lahmann, A. (2024). The GenAI is out of the bottle: generative artificial intelligence from a business model innovation perspective. Review of Managerial Science, 18(4), 1189-1220. https://doi.org/10.1007/s11846-023-00696-z DOI: https://doi.org/10.1007/s11846-023-00696-z
Kshetri, N., Dwivedi, Y. K., Davenport, T. H. y Panteli, N. (2024). Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda. International Journal of Information Management, 75, 102716. https://doi.org/10.1016/j.ijinfomgt.2023.102716 DOI: https://doi.org/10.1016/j.ijinfomgt.2023.102716
Li, J., Tian, Y., Zhu, Y., Zhou, T., Li, J., Ding, K. y Li, J. (2020). A multicenter random forest model for effective prognosis prediction in collaborative clinical research network. Artificial Intelligence in Medicine, 103. https://doi.org/10.1016/j.artmed.2020.101814 DOI: https://doi.org/10.1016/j.artmed.2020.101814
Li, L., Zhu, J., Zhang, H., Tan, H., Du, B. y Ran, B. (2020). Coupled application of generative adversarial networks and conventional neural networks for travel mode detection using GPS data. Transportation Research Part A: Policy and Practice, 136, 282-292. https://doi.org/10.1016/j.tra.2020.04.005 DOI: https://doi.org/10.1016/j.tra.2020.04.005
Li, P., Pei, Y. y Li, J. (2023). A comprehensive survey on design and application of autoencoder in deep learning. Applied Soft Computing, 138, 110176. https://doi.org/10.1016/j.asoc.2023.110176 DOI: https://doi.org/10.1016/j.asoc.2023.110176
Lin, H., Liu, Y., Li, S. y Qu, X. (2023). How generative adversarial networks promote the development of intelligent transportation systems: A survey. IEEE/CAA Journal of Automatica Sinica, 10(9), 1781-1796. https://doi.org/10.1109/JAS.2023.123744 DOI: https://doi.org/10.1109/JAS.2023.123744
Lin, Y., Li, L., Jing, H., Ran, B. y Sun, D. (2020). Automated traffic incident detection with a smaller dataset based on generative adversarial networks. Accident Analysis & Prevention, 144, 105628. https://doi.org/10.1016/j.aap.2020.105628 DOI: https://doi.org/10.1016/j.aap.2020.105628
Lodge, J. M., Thompson, K. y Corrin, L. (2023). Mapping out a research agenda for generative artificial intelligence in tertiary education. Australasian Journal of Educational Technology, 39(1), 1-8. https://doi.org/10.14742/ajet.8695 DOI: https://doi.org/10.14742/ajet.8695
Lopezosa, C., Pérez-Montoro, M. y Rey Martín, C. (2024). El uso de la inteligencia artificial en las redacciones: propuestas y limitaciones. Revista de Comunicación, 23(1), 279-293. https://doi.org/10.26441/rc23.1-2024-3309 DOI: https://doi.org/10.26441/RC23.1-2024-3309
de la Mata, D. C., de Blanes Sebastián, M. G. y Camperos, M. C. (2024). Hybrid artificial intelligence: Application in the banking sector. Revista de Ciencias Sociales, 30(3), 22-36. https://doi.org/10.31876/rcs.v30i3.42674 DOI: https://doi.org/10.31876/rcs.v30i3.42674
Ning, Y., Teixayavong, S., Shang, Y., Savulescu, J., Nagaraje, V., Miao, D., Mertens, M., Ting, D.S.W., Ong, J.C.L., Liu, M., Cao, J., Dunn, M., Vaughan, R., Ong, M.E.H., Sung, J.J.-Y., Topol, E.J. y Liu, N. (2024). Generative artificial intelligence and ethical considerations in health care: A scoping review and ethics checklist. The Lancet Digital Health, 6(1), e123-e135. https://doi.org/10.1016/S2589-7500(24)00143-2 DOI: https://doi.org/10.1016/S2589-7500(24)00143-2
Perez-Cerrolaza, J., Abella, J., Borg, M., Donzella, C., Cerquides, J., Cazorla, F. J., Englund, C., Tauber, M., Nikolakopoulos, G. y Flores, J. L. (2024). Artificial intelligence for safety-critical systems in industrial and transportation domains: A survey. ACM Computing Surveys, 56(7), 1-40. https://doi.org/10.1145/3626314 DOI: https://doi.org/10.1145/3626314
Pillai, R. y Sivathanu, B. (2020). Adoption of AI-based chatbots for hospitality and tourism. International Journal of Contemporary Hospitality Management, 32(10), 3199-3226. https://doi.org/10.1108/IJCHM-04-2020-0259 DOI: https://doi.org/10.1108/IJCHM-04-2020-0259
Preiksaitis, C. y Rose, C. (2023). Opportunities, challenges, and future directions of generative artificial intelligence in medical education: scoping review. JMIR medical education, 9, e48785. https://doi.org/10.2196/48785 DOI: https://doi.org/10.2196/48785
de Rosa, G. H. y Papa, J. P. (2021). A survey on text generation using generative adversarial networks. Pattern Recognition, 119. https://doi.org/10.1016/j.patcog.2021.108098 DOI: https://doi.org/10.1016/j.patcog.2021.108098
Rane, N., Choudhary, S. P. y Rane, J. (2024). Acceptance of artificial intelligence: key factors, challenges, and implementation strategies. Journal of Applied Artificial Intelligence, 5(2), 50-70. https://doi.org/10.2139/ssrn.4842167 DOI: https://doi.org/10.48185/jaai.v5i2.1017
Rese, A., Ganster, L. y Baier, D. (2020). Chatbots in retailers' customer communication: How to measure their acceptance? Journal of Retailing and Consumer Services, 56, 102176. https://doi.org/10.1016/j.jretconser.2020.102176 DOI: https://doi.org/10.1016/j.jretconser.2020.102176
Saetra, H. S. (2023). Generative AI: Here to stay, but for good? Technology in Society, 75. https://doi.org/10.1016/j.techsoc.2023.102372 DOI: https://doi.org/10.1016/j.techsoc.2023.102372
Song, M., Xing, X., Duan, Y., Cohen, J. y Mou, J. (2022). Will artificial intelligence replace human customer service? The impact of communication quality and privacy risks on adoption intention. Journal of Retailing and Consumer Services, 66, 102900. https://doi.org/10.1016/j.jretconser.2021.102900 DOI: https://doi.org/10.1016/j.jretconser.2021.102900
Takahashi, S., Chen, Y. y Tanaka-Ishii, K. (2019). Modeling financial time-series with generative adversarial networks. Physica A: Statistical Mechanics and its Applications, 527, 121261. https://doi.org/10.1016/j.physa.2019.121261 DOI: https://doi.org/10.1016/j.physa.2019.121261
Tian, S., Wang, M., Dai, N., Ma, H., Li, L., Fiorenza, L., Sun, Y. y Li, Y. (2022). DCPR-GAN: Dental crown prosthesis restoration using two-stage generative adversarial networks. IEEE Journal of Biomedical and Health Informatics, 26(1), 151-160. https://doi.org/10.1109/JBHI.2021.3119394 DOI: https://doi.org/10.1109/JBHI.2021.3119394
Udegbe, F. C., Ebulue, O. R., Ebulue, C. C. y Ekesiobi, C. S. (2024). The role of artificial intelligence in healthcare: A systematic review of applications and challenges. International Medical Science Research Journal, 4(4), 500-508. https://doi.org/10.51594/imsrj.v4i4.1052 DOI: https://doi.org/10.51594/imsrj.v4i4.1052
Wiese, M., Knobloch, R., Korn, R. y Kretschmer, P. (2020). Quant GANs: Deep generation of financial time series. Quantitative Finance, 20(9), 1419-1440. https://doi.org/10.1080/14697688.2020.1730426 DOI: https://doi.org/10.1080/14697688.2020.1730426
Wong, I. A., Lian, Q. L. y Sun, D. N. (2023). Autonomous travel decision-making: An early glimpse into ChatGPT and generative AI. Journal of Hospitality and Tourism Management, 56, 253-263. https://doi.org/10.1016/j.jhtm.2023.06.022 DOI: https://doi.org/10.1016/j.jhtm.2023.06.022
Yu, H. y Guo, Y. (2023). Generative artificial intelligence empowers educational reform: current status, issues, and prospects. Frontiers in Education, 8, 1183162. https://doi.org/10.3389/feduc.2023.1183162 DOI: https://doi.org/10.3389/feduc.2023.1183162
Zhao, J., Huang, J., Zhi, D., Yan, W., Ma, X., Yang, X., Li, X., Ke, Q., Jiang, T., Calhoun, V. D. y Sui, J. (2020). Functional network connectivity (FNC)-based generative adversarial network (GAN) and its applications in classification of mental disorders. Journal of Neuroscience Methods, 341. https://doi.org/10.1016/j.jneumeth.2020.108756 DOI: https://doi.org/10.1016/j.jneumeth.2020.108756
Zhu, C., Sun, M., Luo, J., Li, T. y Wang, M. (2023). How to harness the potential of ChatGPT in education? Knowledge Management & ELearning, 15(2), 133-152. https://doi.org/10.34105/j.kmel.2023.15.008 DOI: https://doi.org/10.34105/j.kmel.2023.15.008
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 María García de Blanes Sebastián, Luis Díaz-Marcos, Óscar Aguado Tevar, Alberto Tomás Delso Vicente

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.