The associations of rare diseases: the structure of their networks and identification of opinion leaders through the technique of social network analysis
DOI:
https://doi.org/10.4185/RLCS-2021-1498Keywords:
Social Network Analysis, SNA, Rare Diseases, Twitter, NodeXLAbstract
Introduction. This research has used the technique of Social Network Analysis to analyze the structure of network relationships that surrounds on Twitter the three more important federations of associations of rare diseases and identify key actors in their communications. Methodology. NodeXL software has been used, with visualization as a key component, to capture the network of connections of the accounts under study, represent their interaction patterns and find out the position occupied by users within the network. Conclusions. The results indicate that these associations use social networks to raise awareness, educate and inform about RD and its problems. They are very influential accounts with a high degree of connection and a great capacity for prescription due to the interest aroused in a part of the population by these pathologies and everything that surrounds them.
Downloads
References
Adekunle, L. & Adnan, M. (2016). Communicating health: media framing of Ébola outbreak in nigerian newspapers. Jurnal Komunikasi, Malaysian Journal of Communication, 32 (2), 362-380. https://ejournal.ukm.my/mjc/article/view/16486/7624
Ahmed, W. & Lugovic, S. (2019). Social media analytics: analysis and visualisation of news diffusion using NodeXL. Online Information Review, 43(1), 149-160. https://doi.org/10.1108/OIR-03-2018-0093
Armayones, M., Requena, S., Gómez-Zúñiga, B., Pousada, M., & Bañón, A. M. (2015) El uso de Facebook en asociaciones españolas de enfermedades raras: ¿cómo y para qué lo utilizan? Gaceta Sanitaria, 29(5), 335-340. https://doi.org/10.1016/j.gaceta.2015.05.007
Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011) Everyone's an influencer: quantifying influence on twitter. In Proceedings of the fourth ACM international conference on Web search and data mining. 65-74. ACM.
Benetoli, A., Chen, T. F., & Aslani, P. (2018). How patients’ use of social media impacts their interactions with healthcare professionals. Patient education and counseling, 101(3), 439-444. https://doi.org/10.1016/j.pec.2017.08.015
Berkman, L. F., Kawachi, I., & Glymour, M. M. (2014). Social epidemiology. Oxford University Press.
Brandes, U., Borgatti, S. P., & Freeman, L. C. (2016). Maintaining the duality of closeness and betweenness centrality. Social Networks, 44, 153-159. https://doi.org/10.1016/j.socnet.2015.08.003
Camacho, I. (2009) La ‘gripe A’, en la prensa española. Revista Latina de Comunicación Social, 64, 827-843. http://dx.doi.org/10.4185/RLCS-64-2009-865-827-843
Castillo Esparcia, A., López Villafranca, P., Carretón Ballester, M. C. (2015) La comunicación en la red de pacientes con enfermedades raras en España. Revista Latina de Comunicación Social, 70, 673 688. http://dx.doi.org/10.4185/RLCS-2015-1065
Cavaca, A., Emerich, T., Vasconcellos, R., Santos, T. & Oliveira, E. (2016) Diseases Neglected by the Media in Espírito Santo, Brazil in 2011–2012. PLoS Negl Trop Dis 10 (4), 1-19. http://dx.doi.org/10.1371 /journal.pntd.0004662
Choi, M., Sang, Y., & Woo Park, H. (2014) Exploring political discussions by Korean twitter users: A look at opinion leadership and homophily phenomenon. Aslib Journal of Information Management, 66(6), 582-602. https://doi.org/10.1108/AJIM-11-2012-0089
Costa, C. (2008) Medicina y salud en la prensa. Las noticias de salud en los principales diarios de Galicia. Revista Latina de Comunicación Social, 63, 15-21. http://dx.doi.org/10.4185/RLCS-63-2008-750- 015-02
Dalley, S. E., Buunk, A. P., & Umit, T. (2009) Female body dissatisfaction after exposure to overweight and thin media images: The role of body mass index and neuroticism. Personality and Individual Differences, 47(1), 47-51. http://dx.doi.org/10.1016/j.paid.2009.01.044
Del Fresno García, M., Daly, A. J., & Segado Sánchez-Cabezudo, S. (2016) Identifying the new Influences in the Internet Era: Social Media and Social Network Analysis. Revista Española de Investigaciones Sociológicas (REIS), 153(1), 23-40. http://dx.doi.org/10.5477/cis/reis.153.23
Del Fresno, M., Marqués, P., & Paunero, D. S. (2014) Conectados por redes sociales: introducción al análisis de redes sociales y casos prácticos. Editorial UOC.
Del-Fresno-García, M. (2014). Haciendo visible lo invisible: Visualización de la estructura de las relaciones en red en Twitter por medio del Análisis de Redes Sociales. El profesional de la información, 23(3), 246-252. https://doi.org/10.3145/epi.2014.may.04
Dhar, J., Jain, A., & Gupta, V. K. (2016) A mathematical model of news propagation on online social network and a control strategy for rumor spreading. Social Network Analysis and Mining, 6(1), 57. https://doi.org/10.1007/s13278-016-0366-5
Díaz, L. (2007) La representación de la discapacidad en los medios de comunicación. Como lograr una presencia más adecuada. Comunicación y Ciudadanía, 1. https://doi.org/10.4185/RLCS-2015-1065
Dossis, M., Amanatidis, D., & Mylona, I. (2015) Mining Twitter Data: Case Studies with Trending Hashtags. Proceedings in ARSA-Advanced Research in Scientific Areas, (1).
Einwiller, S. A., & Steilen, S. (2015) Handling complaints on social network sites–An analysis of complaints and complaint responses on Facebook and Twitter pages of large US companies. Public Relations Review, 41(2), 195-204. https://doi.org/10.1016/j.pubrev.2014.11.012
Emerich, T. B., Cavaca, A. G., Santos-Neto, E. T., Gentilli, V. I., & Oliveira, A. E. (2017) Media Valuations of health journalism and health dynamics in brazilian printed media. Int'l J. Soc. Sci. Stud., 5, 31. https://doi.org/10.11114/ijsss.v5i1.1997
Felt, M. (2016) Social media and the social sciences: How researchers employ Big Data analytics. Big Data & Society, 3(1) https://doi.org/10.1177/2053951716645828
Fink, C., Schmidt, A., Barash, V., Cameron, C., & Macy, M. (2016) Complex contagions and the diffusion of popular Twitter hashtags in Nigeria. Social Network Analysis and Mining, 6(1), 1. https://doi.org/10.1007/s13278-015-0311-z
Freberg, K., Graham, K., McGaughey, K., & Freberg, L. A. (2011) Who are the social media influencers? A study of public perceptions of personality. Public Relations Review, 37(1), 90-92. https://doi.org/10.1016/j.pubrev.2010.11.001
Gil de Zúñiga, H., Diehl, T., & Ardèvol-Abreu, A. (2016) When Citizens and Journalists Interact on Twitter: Expectations of journalists’ performance on social media and perceptions of media bias. Journalism Studies, 1-20. https://doi.org/10.1080/1461670X.2016.1178593
Groshek, J., & Tandoc, E. (2017) The affordance effect: Gatekeeping and (non) reciprocal journalism on Twitter. Computers in Human Behavior, 66, 201-210. https://doi.org/10.1016/j.chb.2016.09.020
Guo, S., Guo, X., Fang, Y., & Vogel, D. (2017) How doctors gain social and economic returns in online health-care communities: a professional capital perspective. Journal of Management Information Systems, 34(2), 487-519. https://doi.org/10.1080/07421222.2017.1334480
Gúzman, B. & Rodríguez, R. (2016) Comunicación y salud: la anorexia a través de la prensa. Estudios sobre el Mensaje Periodístico, 22 (2), 747-758. http://dx.doi.org/10.5209/ESMP.54233
Hansen, D., Shneiderman, B., & Smith, M. A. (2010): Analyzing social media networks with NodeXL: Insights from a connected world. Morgan Kaufmann.
Hanusch, F. & Bruns, A. (2017) Journalistic Branding on Twitter: A representative study of Australian journalists’ profile descriptions. Digital Journalism, 5(1), 26-43. http://www.revistalatinacs.org/070/paper/1065/35es.html
Huerta, B., Fernández, B., Gallardo, C., & Hernández, L. (2012) El rol del trabajador social en la atención de las personas afectadas por enfermedades raras. La enfermedad de Huntington. Documentos de Trabajo Social, 51, 243-258. https://dialnet.unirioja.es/servlet/articulo?codigo=4642268
Jacobs, R., Boyd, L., Brennan, K., Sinha, C. & Giuliani, S. (2016) The importance of social media for patients and families affected by congenital anomalies: A Facebook cross-sectional analysis and user survey”. Journal of pediatric surgery. 51(11), 1766-1771. https://doi.org/10.1016/j.jpedsurg.2016.07.008
Kuz, A., Falco, M., & Giandini, R. (2016) Análisis de redes sociales: un caso práctico. Computación y Sistemas, 20(1), 89-106. https://dx.doi.org/10.13053/cys-20-1-2321
Kwak, H., Lee, C., Park, H., & Moon, S. (2010l) What is Twitter, a social network or a news media? In Proceedings of the 19th international conference on World wide web (pp. 591-600). ACM.
Lee, J., Agrawal, M., & Rao, H. R. (2015) Message diffusion through social network service: The case of rumor and non-rumor related tweets during Boston bombing 2013. Information Systems Frontiers. 17(5), 997-1005. https://dx.doi.org/10.1007/s10796-015-9568-z
Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007) The dynamics of viral marketing. ACM Transactions on the Web (TWEB). 1(1), 5. https://doi.org/10.1145/1232722.1232727
Lichoti, J. K., Davies, J., Kitala, P. M., Githigia, S. M., Okoth, E., Maru, Y. & Bishop, R. P. (2016) Social network analysis provides insights into African swine fever epidemiology. Preventive veterinary medicine, 126, 1-10. https://doi.org/10.1016/j.prevetmed.2016.01.019
Lieberman, M. (2014, March) Visualizing big data: Social network analysis. In Digital research conference (pp. 1-23). https://scholar.google.com/scholar_lookup?title=Visualizing%20Big%20Data%3A%20Social%20Network%20Analysis&author=M.%20Lieberman&publication_year=2014
Liu, B. (2011) Social network analysis”. In Web Data Mining (pp. 269-309). Springer Berlin Heidelberg.
López-Villafranca, P. (2016) Estudio de la presencia de los gabinetes de comunicación en las organizaciones de pacientes con enfermedades raras en España. Revista internacional de Relaciones Públicas. 11(6), 27-46. http://dx.doi.org/10.5783/RIRP-11-2016-03-27-46.
López-Villafranca, P. & Castillo-Esparcia, A. (2018) El encuadre de las enfermedades raras en los medios de comunicación españoles. Observatorio (OBS*), 12(2), 136-155. https://doi.org/10.15847/obsobs12220181074
Meijer, A. J. & Torenvlied, R. (2016) Social media and the new organization of government communications: An empirical analysis of Twitter usage by the Dutch police. The American Review of Public Administration. 46(2), 143-161. https://doi.org/10.1177/0275074014551381
Mochón, M. C. (2016) Social network analysis and big data tools applied to the systemic risk supervision. Ijimai. 3(6), 34-37. https://doi.org/10.9781/ijimai.2016.365
Observatorio Nacional de las Telecomunicaciones y de la Sociedad de la Información (ONTSI) (2016): Los ciudadanos ante la e-Sanidad. Estudio sobre opiniones y expectativas de los ciudadanos sobre el uso y aplicación de las TIC en el ámbito sanitario. https://www.ontsi.red.es/ontsi/sites/ontsi/files/los_ciudadanos_ante_la_e-sanidad.pdf
O'Keeffe, G. S. & Clarke-Pearson, K. (2011) The impact of social media on children, adolescents, and families. Pediatrics, 127(4), 800-804. https://doi.org/10.1542/peds.2011-0054
Pérez Dasilva, J., Santos Díez, M. T. & Meso Ayerdi, K. (2015) Radio y redes sociales: el caso de los programas deportivos en Twitter. Revista Latina de Comunicación Social, (70), 141-155. https://doi.org/10.4185/RLCS-2015-1039
Pérez Dasilva, J., Meso Ayerdi, K. & Mendiguren Galdospín, T. (2018) ¿Dialogan los líderes políticos españoles en Twitter con los medios de comunicación y periodistas? Comunicación y Sociedad, 31(3), 299-316. https://doi.org/10.15581/003.31.3.299-315
Peñafiel, C. Camacho, I. Aiestaran, A. Ronco, M. & Echegaray L. (2014) La divulgación de la información de salud: un reto de confianza entre los diferentes sectores implicados. Revista Latina de Comunicación Social, 69, 135- 151. https://doi.org/10.4185/RLCS-2014-1005
Pfeffer, J., Zorbach, T. & Carley, K. M. (2014) Understanding online firestorms: Negative word-of-mouth dynamics in social media networks. Journal of Marketing Communications, 20(1-2), 117-128. https://doi.org/10.15581/003.31.3.299-315
Posada, M., Martín-Arribas, C., Ramírez, A., Villaverde, A. y Abaitua, I. (2008) Enfermedades raras. Concepto, epidemiología y situación actual en España. Anales del Sistema Sanitario de Navarra, 31(2). http://scielo.isciii.es/pdf/asisna/v31s2/original2.pdf
Roberts, A. & Good, E. (2010) Media images and female body dissatisfaction: The moderating effects of the Five-Factor traits”. Eating Behaviours, 4(11), 211-216. USA, Indiana University. http://dx.doi.org/10.1016/j.eatbeh.2010.04.002
Salinas, S. O., Trujillo, J. M. P. & Montero, R. A. S. (2017) Election analysis in Colombia and Venezuela 2015 through sentiment analysis and Twitter. Sistemas & Telemática, 14(39), 57-70. https://doi.org/10.18046/syt.v14i39.2349
Sánchez Hernández, F. (2016) Análisis sobre los contenidos de enfermedades raras en la prensa escrita española. Revista Española de Comunicación en Salud, 242-260. http://dx.doi.org/10.20318/recs.2016.3450
Santos, M. T. y Pérez Dasilva, J. A. (2018) Las enfermedades raras en la red: El caso de FEDER en Twitter. En: IX Congreso Internacional de Ciberperiodismo. UPV-EHU, Bilbao.
Santos, M. T. y Pérez Dasilva, J. A. (2019) Las enfermedades raras y su representación en la prensa española”. Palabra Clave 22(1), 254-287. https://doi.org/10.5294/pacla.2019.22.1.10
Schroeder, R. (2016) Online Entertainment the Globalization of On-Screen Sociability: Social Media and Tethered Togetherness. International Journal of Communication, 10, 18. https://doi.org/10.1932–8036/20160005
Schumacher, K., Stringer, K., Donohue, J., Yu, S., Shaver, A., Caruthers, R., Zikmund-Fisher, B., Fifer Goldberg, C. & Russell, M. (2014) Social media methods for studying rare diseases. Pediatrics, 133(5), 1345–1353. https://doi.org/10.1542/peds.2013-2966.
Scott, J. (2012): Social network analysis. Sage.
Shin, J., Jian, L., Driscoll, K., & Bar, F. (2016) Political rumoring on Twitter during the 2012 US presidential election: Rumor diffusion and correction. New media & society, 1, 22.
Shu, W., & Chuang, Y. H. (2011) The perceived benefits of six-degree-separation social networks. Internet Research, 21(1), 26-45. https://doi.org/10.1108/10662241111104866
Smith, M. A. (2014) NodeXL: Simple network analysis for social media. In Encyclopedia of Social Network Analysis and Mining (pp. 1153-1170). Springer New York.
Solves. J. & Bañón A. (2014) Las Enfermedades Raras en los medios. Informe Enero-Marzo Observatoria sobre Enfermedades Raras (OBSER).
Suh, B., Hong, L., Pirolli, P., & Chi, E. H. (2010) Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In 2010 IEEE Second International Conference on Social Computing (pp. 177-184). IEEE.
Terrón, J. L. (2012) El tratamiento del VIH-sida en los periódicos españoles, una investigación colaborativa. Revista de Comunicación y salud 1 (1), 4-17. https://dialnet.unirioja.es/ejemplar/279774
Verweij, P. (2012) Twitter links between politicians and journalists. Journalism Practice, 6(5-6), 680-691. https://doi.org/10.1080/17512786.2012.667272
Villa, Á., Llombart, E., Solanillo, F., Queralt, R., & Castillo, S. (2014) Las enfermedades raras en los medios. Observatorio sobre enfermedades raras (OBSER). https://www.enfermedades-raras.org/images/feder/Documentos_ultimas_noticias/INFORME_OBSER_3_2014_MEDIOS_TERCER_TRIMESTRE.pdf
Williams, S. A., Terras, M. M., & Warwick, C. (2013) What do people study when they study Twitter? Classifying Twitter related academic papers. Journal of Documentation, 69(3), 384-410. https://doi.org/10.1108/JD-03-2012-0027
Wu, S., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011) Who says what to whom on twitter. In Proceedings of the 20th international conference on World wide web (pp. 705-714). ACM.
Yoo, J. & Kim, J. (2012) Obesity in the new media. A content analysis of obesity videos on youtube. Health Communication 27, 86-97. https://doi.org/10.1080/10410236.2011.569003
Zambrano, G. R., Tomalá, J. R., & Albiño, W. A. (2016) Feeling’s analysis using the Twitter API. International Journal of Innovation and Applied Studies, 16(4), 814. http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-16-043-08
Zappavigna, M. (2015) Searchable talk: the linguistic functions of hashtags. Social Semiotics, 25(3), 274-291. https://doi.org/10.1080/10350330.2014.996948