Las asociaciones de enfermedades raras: Estructura de sus redes e identificación de los líderes de opinión mediante la técnica del análisis de redes sociales

Autores/as

DOI:

https://doi.org/10.4185/RLCS-2021-1498

Palabras clave:

Análisis de Redes sociales, ARS, Enfermedades Raras, Twitter, NodeXL

Resumen

Introducción. Esta investigación ha empleado la técnica del Análisis de Redes Sociales para analizar la estructura de relaciones de red que envuelve en Twitter a las tres federaciones de asociaciones de enfermedades raras más importantes e identificar a los actores clave en sus comunicaciones. Metodología. Se ha utilizado el software NodeXL, con la visualización como un componente clave, para capturar la red de conexiones de las cuentas objeto de estudio, representar sus patrones de interacción y averiguar la posición que ocupan los usuarios dentro de la red. Conclusiones. Los resultados indican que estas asociaciones emplean las redes sociales para sensibilizar, educar e informar sobre las ER y sus problemáticas. Son cuentas muy influyentes con un alto grado de vinculación y una gran capacidad de prescripción debido al interés que despiertan en una parte de la población estas patologías y todo lo que las rodea.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jesús Pérez Dasilva, Universidad del País Vasco

En la actualidad es profesor agregado en el departamento de Periodismo II de la Facultad de Ciencias Sociales y de la Comunicación de la Universidad del País Vasco donde imparte la asignatura Redacción Ciberperiodística. En lo referido a gestión, ha sido vicedecano de Movilidad Internacional de la Facultad y director del Máster Universitario de Comunicación Social. Como investigador, ha realizado dos estancias investigadoras en la Universidad de Cambridge (2012) y la Universidad de Sevilla (2010). También ha realizado movilidades docentes dentro del marco Erasmus a las Universidades de Wroclaw (2017), do Minho (2016), Oporto (2015), Beira Interior (2013), Trieste (2011) y Nova de Lisboa (2010). Además, ha participado en una docena de proyectos de investigación y es autor de una veintena de artículos científicos publicados en revistas de prestigio incluidas en bases de datos como JCR, SCOPUS o Dice-Cindoc. Actualmente, es miembro del grupo consolidado de investigación Gureiker y del proyecto “Audiencias activas y viralización y transformación de los mensajes periodísticos” (CSO2015-64955-C4-4-R), financiado por el Plan Nacional del I+D+i, del Ministerio de Economía y Competitividad, y por el Fondo Europeo de Desarrollo Regional (FEDER).

Mª Teresa Santos Diez, Universidad del País Vasco

En la actualidad es profesora Titular de Universidad en la Facultad de Ciencias Sociales y Comunicación UPV/EHU. Las líneas de investigación se centran en medios locales (prensa, radio, televisión), comunicación, salud y periodismo digital. Es autora de varios libros y artículos como: La radio latina en España. Un medio para la integración (Perfiles Latinoamericanos 2016),Treatment of cannabis in the Spanish press (Cuadernos Info 2017) y Redes sociales y evangelización: el caso de las diócesis españolas en "Facebook" (Estudios Mensaje Periodístico 2017), Features and Dimensions of Health Care Journalism: A Case Study on Spanish Free Magazines (Sage Open, 2017), Therapeutic cannabis in the Spanish newspapers (Estudios Mensaje Periodístico, 2018) y Rare Diseases and their Representation in the Spanish Press (Palabra Clave, 2019) entre otros.

Koldobika Meso Ayerdi, Universidad del País Vasco

En la actualidad es profesor titular de la Facultad de Ciencias Sociales y de la Comunicación de la Universidad del País Vasco, donde imparte las asignaturas Redacción ciberperiodística y Bases teóricas y metodología de la investigación en ciberperiodismo en el Master de Investigación Social de la UPV. También ha impartido materias como Modelos de los Medios de Comunicación e Introducción al Periodismo. Es autor de varios libros sobre periodismo en Internet y ha publicado una veintena de artículos en revistas como Estudios del Mensaje PeriodísticoZerAnálisi, y Latina. Actualmente es el director del Departamento de Periodismo II de la UPV-EHU y dirige el proyecto financiado por el Ministerio de Economía y Competitividad titulado “Audiencias activas y periodismo: análisis de la calidad y la regulación de los contenidos elaborados por los usuarios”, con referencia CSO2012-39518-C04-03.

Citas

Adekunle, L. & Adnan, M. (2016). Communicating health: media framing of Ébola outbreak in nigerian newspapers. Jurnal Komunikasi, Malaysian Journal of Communication, 32 (2), 362-380. https://ejournal.ukm.my/mjc/article/view/16486/7624

Ahmed, W. & Lugovic, S. (2019). Social media analytics: analysis and visualisation of news diffusion using NodeXL. Online Information Review, 43(1), 149-160. https://doi.org/10.1108/OIR-03-2018-0093

Armayones, M., Requena, S., Gómez-Zúñiga, B., Pousada, M., & Bañón, A. M. (2015) El uso de Facebook en asociaciones españolas de enfermedades raras: ¿cómo y para qué lo utilizan? Gaceta Sanitaria, 29(5), 335-340. https://doi.org/10.1016/j.gaceta.2015.05.007

Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011) Everyone's an influencer: quantifying influence on twitter. In Proceedings of the fourth ACM international conference on Web search and data mining. 65-74. ACM.

Benetoli, A., Chen, T. F., & Aslani, P. (2018). How patients’ use of social media impacts their interactions with healthcare professionals. Patient education and counseling, 101(3), 439-444. https://doi.org/10.1016/j.pec.2017.08.015

Berkman, L. F., Kawachi, I., & Glymour, M. M. (2014). Social epidemiology. Oxford University Press.

Brandes, U., Borgatti, S. P., & Freeman, L. C. (2016). Maintaining the duality of closeness and betweenness centrality. Social Networks, 44, 153-159. https://doi.org/10.1016/j.socnet.2015.08.003

Camacho, I. (2009) La ‘gripe A’, en la prensa española. Revista Latina de Comunicación Social, 64, 827-843. http://dx.doi.org/10.4185/RLCS-64-2009-865-827-843

Castillo Esparcia, A., López Villafranca, P., Carretón Ballester, M. C. (2015) La comunicación en la red de pacientes con enfermedades raras en España. Revista Latina de Comunicación Social, 70, 673 688. http://dx.doi.org/10.4185/RLCS-2015-1065

Cavaca, A., Emerich, T., Vasconcellos, R., Santos, T. & Oliveira, E. (2016) Diseases Neglected by the Media in Espírito Santo, Brazil in 2011–2012. PLoS Negl Trop Dis 10 (4), 1-19. http://dx.doi.org/10.1371 /journal.pntd.0004662

Choi, M., Sang, Y., & Woo Park, H. (2014) Exploring political discussions by Korean twitter users: A look at opinion leadership and homophily phenomenon. Aslib Journal of Information Management, 66(6), 582-602. https://doi.org/10.1108/AJIM-11-2012-0089

Costa, C. (2008) Medicina y salud en la prensa. Las noticias de salud en los principales diarios de Galicia. Revista Latina de Comunicación Social, 63, 15-21. http://dx.doi.org/10.4185/RLCS-63-2008-750- 015-02

Dalley, S. E., Buunk, A. P., & Umit, T. (2009) Female body dissatisfaction after exposure to overweight and thin media images: The role of body mass index and neuroticism. Personality and Individual Differences, 47(1), 47-51. http://dx.doi.org/10.1016/j.paid.2009.01.044

Del Fresno García, M., Daly, A. J., & Segado Sánchez-Cabezudo, S. (2016) Identifying the new Influences in the Internet Era: Social Media and Social Network Analysis. Revista Española de Investigaciones Sociológicas (REIS), 153(1), 23-40. http://dx.doi.org/10.5477/cis/reis.153.23

Del Fresno, M., Marqués, P., & Paunero, D. S. (2014) Conectados por redes sociales: introducción al análisis de redes sociales y casos prácticos. Editorial UOC.

Del-Fresno-García, M. (2014). Haciendo visible lo invisible: Visualización de la estructura de las relaciones en red en Twitter por medio del Análisis de Redes Sociales. El profesional de la información, 23(3), 246-252. https://doi.org/10.3145/epi.2014.may.04

Dhar, J., Jain, A., & Gupta, V. K. (2016) A mathematical model of news propagation on online social network and a control strategy for rumor spreading. Social Network Analysis and Mining, 6(1), 57. https://doi.org/10.1007/s13278-016-0366-5

Díaz, L. (2007) La representación de la discapacidad en los medios de comunicación. Como lograr una presencia más adecuada. Comunicación y Ciudadanía, 1. https://doi.org/10.4185/RLCS-2015-1065

Dossis, M., Amanatidis, D., & Mylona, I. (2015) Mining Twitter Data: Case Studies with Trending Hashtags. Proceedings in ARSA-Advanced Research in Scientific Areas, (1).

Einwiller, S. A., & Steilen, S. (2015) Handling complaints on social network sites–An analysis of complaints and complaint responses on Facebook and Twitter pages of large US companies. Public Relations Review, 41(2), 195-204. https://doi.org/10.1016/j.pubrev.2014.11.012

Emerich, T. B., Cavaca, A. G., Santos-Neto, E. T., Gentilli, V. I., & Oliveira, A. E. (2017) Media Valuations of health journalism and health dynamics in brazilian printed media. Int'l J. Soc. Sci. Stud., 5, 31. https://doi.org/10.11114/ijsss.v5i1.1997

Felt, M. (2016) Social media and the social sciences: How researchers employ Big Data analytics. Big Data & Society, 3(1) https://doi.org/10.1177/2053951716645828

Fink, C., Schmidt, A., Barash, V., Cameron, C., & Macy, M. (2016) Complex contagions and the diffusion of popular Twitter hashtags in Nigeria. Social Network Analysis and Mining, 6(1), 1. https://doi.org/10.1007/s13278-015-0311-z

Freberg, K., Graham, K., McGaughey, K., & Freberg, L. A. (2011) Who are the social media influencers? A study of public perceptions of personality. Public Relations Review, 37(1), 90-92. https://doi.org/10.1016/j.pubrev.2010.11.001

Gil de Zúñiga, H., Diehl, T., & Ardèvol-Abreu, A. (2016) When Citizens and Journalists Interact on Twitter: Expectations of journalists’ performance on social media and perceptions of media bias. Journalism Studies, 1-20. https://doi.org/10.1080/1461670X.2016.1178593

Groshek, J., & Tandoc, E. (2017) The affordance effect: Gatekeeping and (non) reciprocal journalism on Twitter. Computers in Human Behavior, 66, 201-210. https://doi.org/10.1016/j.chb.2016.09.020

Guo, S., Guo, X., Fang, Y., & Vogel, D. (2017) How doctors gain social and economic returns in online health-care communities: a professional capital perspective. Journal of Management Information Systems, 34(2), 487-519. https://doi.org/10.1080/07421222.2017.1334480

Gúzman, B. & Rodríguez, R. (2016) Comunicación y salud: la anorexia a través de la prensa. Estudios sobre el Mensaje Periodístico, 22 (2), 747-758. http://dx.doi.org/10.5209/ESMP.54233

Hansen, D., Shneiderman, B., & Smith, M. A. (2010): Analyzing social media networks with NodeXL: Insights from a connected world. Morgan Kaufmann.

Hanusch, F. & Bruns, A. (2017) Journalistic Branding on Twitter: A representative study of Australian journalists’ profile descriptions. Digital Journalism, 5(1), 26-43. http://www.revistalatinacs.org/070/paper/1065/35es.html

Huerta, B., Fernández, B., Gallardo, C., & Hernández, L. (2012) El rol del trabajador social en la atención de las personas afectadas por enfermedades raras. La enfermedad de Huntington. Documentos de Trabajo Social, 51, 243-258. https://dialnet.unirioja.es/servlet/articulo?codigo=4642268

Jacobs, R., Boyd, L., Brennan, K., Sinha, C. & Giuliani, S. (2016) The importance of social media for patients and families affected by congenital anomalies: A Facebook cross-sectional analysis and user survey”. Journal of pediatric surgery. 51(11), 1766-1771. https://doi.org/10.1016/j.jpedsurg.2016.07.008

Kuz, A., Falco, M., & Giandini, R. (2016) Análisis de redes sociales: un caso práctico. Computación y Sistemas, 20(1), 89-106. https://dx.doi.org/10.13053/cys-20-1-2321

Kwak, H., Lee, C., Park, H., & Moon, S. (2010l) What is Twitter, a social network or a news media? In Proceedings of the 19th international conference on World wide web (pp. 591-600). ACM.

Lee, J., Agrawal, M., & Rao, H. R. (2015) Message diffusion through social network service: The case of rumor and non-rumor related tweets during Boston bombing 2013. Information Systems Frontiers. 17(5), 997-1005. https://dx.doi.org/10.1007/s10796-015-9568-z

Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007) The dynamics of viral marketing. ACM Transactions on the Web (TWEB). 1(1), 5. https://doi.org/10.1145/1232722.1232727

Lichoti, J. K., Davies, J., Kitala, P. M., Githigia, S. M., Okoth, E., Maru, Y. & Bishop, R. P. (2016) Social network analysis provides insights into African swine fever epidemiology. Preventive veterinary medicine, 126, 1-10. https://doi.org/10.1016/j.prevetmed.2016.01.019

Lieberman, M. (2014, March) Visualizing big data: Social network analysis. In Digital research conference (pp. 1-23). https://scholar.google.com/scholar_lookup?title=Visualizing%20Big%20Data%3A%20Social%20Network%20Analysis&author=M.%20Lieberman&publication_year=2014

Liu, B. (2011) Social network analysis”. In Web Data Mining (pp. 269-309). Springer Berlin Heidelberg.

López-Villafranca, P. (2016) Estudio de la presencia de los gabinetes de comunicación en las organizaciones de pacientes con enfermedades raras en España. Revista internacional de Relaciones Públicas. 11(6), 27-46. http://dx.doi.org/10.5783/RIRP-11-2016-03-27-46.

López-Villafranca, P. & Castillo-Esparcia, A. (2018) El encuadre de las enfermedades raras en los medios de comunicación españoles. Observatorio (OBS*), 12(2), 136-155. https://doi.org/10.15847/obsobs12220181074

Meijer, A. J. & Torenvlied, R. (2016) Social media and the new organization of government communications: An empirical analysis of Twitter usage by the Dutch police. The American Review of Public Administration. 46(2), 143-161. https://doi.org/10.1177/0275074014551381

Mochón, M. C. (2016) Social network analysis and big data tools applied to the systemic risk supervision. Ijimai. 3(6), 34-37. https://doi.org/10.9781/ijimai.2016.365

Observatorio Nacional de las Telecomunicaciones y de la Sociedad de la Información (ONTSI) (2016): Los ciudadanos ante la e-Sanidad. Estudio sobre opiniones y expectativas de los ciudadanos sobre el uso y aplicación de las TIC en el ámbito sanitario. https://www.ontsi.red.es/ontsi/sites/ontsi/files/los_ciudadanos_ante_la_e-sanidad.pdf

O'Keeffe, G. S. & Clarke-Pearson, K. (2011) The impact of social media on children, adolescents, and families. Pediatrics, 127(4), 800-804. https://doi.org/10.1542/peds.2011-0054

Pérez Dasilva, J., Santos Díez, M. T. & Meso Ayerdi, K. (2015) Radio y redes sociales: el caso de los programas deportivos en Twitter. Revista Latina de Comunicación Social, (70), 141-155. https://doi.org/10.4185/RLCS-2015-1039

Pérez Dasilva, J., Meso Ayerdi, K. & Mendiguren Galdospín, T. (2018) ¿Dialogan los líderes políticos españoles en Twitter con los medios de comunicación y periodistas? Comunicación y Sociedad, 31(3), 299-316. https://doi.org/10.15581/003.31.3.299-315

Peñafiel, C. Camacho, I. Aiestaran, A. Ronco, M. & Echegaray L. (2014) La divulgación de la información de salud: un reto de confianza entre los diferentes sectores implicados. Revista Latina de Comunicación Social, 69, 135- 151. https://doi.org/10.4185/RLCS-2014-1005

Pfeffer, J., Zorbach, T. & Carley, K. M. (2014) Understanding online firestorms: Negative word-of-mouth dynamics in social media networks. Journal of Marketing Communications, 20(1-2), 117-128. https://doi.org/10.15581/003.31.3.299-315

Posada, M., Martín-Arribas, C., Ramírez, A., Villaverde, A. y Abaitua, I. (2008) Enfermedades raras. Concepto, epidemiología y situación actual en España. Anales del Sistema Sanitario de Navarra, 31(2). http://scielo.isciii.es/pdf/asisna/v31s2/original2.pdf

Roberts, A. & Good, E. (2010) Media images and female body dissatisfaction: The moderating effects of the Five-Factor traits”. Eating Behaviours, 4(11), 211-216. USA, Indiana University. http://dx.doi.org/10.1016/j.eatbeh.2010.04.002

Salinas, S. O., Trujillo, J. M. P. & Montero, R. A. S. (2017) Election analysis in Colombia and Venezuela 2015 through sentiment analysis and Twitter. Sistemas & Telemática, 14(39), 57-70. https://doi.org/10.18046/syt.v14i39.2349

Sánchez Hernández, F. (2016) Análisis sobre los contenidos de enfermedades raras en la prensa escrita española. Revista Española de Comunicación en Salud, 242-260. http://dx.doi.org/10.20318/recs.2016.3450

Santos, M. T. y Pérez Dasilva, J. A. (2018) Las enfermedades raras en la red: El caso de FEDER en Twitter. En: IX Congreso Internacional de Ciberperiodismo. UPV-EHU, Bilbao.

Santos, M. T. y Pérez Dasilva, J. A. (2019) Las enfermedades raras y su representación en la prensa española”. Palabra Clave 22(1), 254-287. https://doi.org/10.5294/pacla.2019.22.1.10

Schroeder, R. (2016) Online Entertainment the Globalization of On-Screen Sociability: Social Media and Tethered Togetherness. International Journal of Communication, 10, 18. https://doi.org/10.1932–8036/20160005

Schumacher, K., Stringer, K., Donohue, J., Yu, S., Shaver, A., Caruthers, R., Zikmund-Fisher, B., Fifer Goldberg, C. & Russell, M. (2014) Social media methods for studying rare diseases. Pediatrics, 133(5), 1345–1353. https://doi.org/10.1542/peds.2013-2966.

Scott, J. (2012): Social network analysis. Sage.

Shin, J., Jian, L., Driscoll, K., & Bar, F. (2016) Political rumoring on Twitter during the 2012 US presidential election: Rumor diffusion and correction. New media & society, 1, 22.

Shu, W., & Chuang, Y. H. (2011) The perceived benefits of six-degree-separation social networks. Internet Research, 21(1), 26-45. https://doi.org/10.1108/10662241111104866

Smith, M. A. (2014) NodeXL: Simple network analysis for social media. In Encyclopedia of Social Network Analysis and Mining (pp. 1153-1170). Springer New York.

Solves. J. & Bañón A. (2014) Las Enfermedades Raras en los medios. Informe Enero-Marzo Observatoria sobre Enfermedades Raras (OBSER).

Suh, B., Hong, L., Pirolli, P., & Chi, E. H. (2010) Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In 2010 IEEE Second International Conference on Social Computing (pp. 177-184). IEEE.

Terrón, J. L. (2012) El tratamiento del VIH-sida en los periódicos españoles, una investigación colaborativa. Revista de Comunicación y salud 1 (1), 4-17. https://dialnet.unirioja.es/ejemplar/279774

Verweij, P. (2012) Twitter links between politicians and journalists. Journalism Practice, 6(5-6), 680-691. https://doi.org/10.1080/17512786.2012.667272

Villa, Á., Llombart, E., Solanillo, F., Queralt, R., & Castillo, S. (2014) Las enfermedades raras en los medios. Observatorio sobre enfermedades raras (OBSER). https://www.enfermedades-raras.org/images/feder/Documentos_ultimas_noticias/INFORME_OBSER_3_2014_MEDIOS_TERCER_TRIMESTRE.pdf

Williams, S. A., Terras, M. M., & Warwick, C. (2013) What do people study when they study Twitter? Classifying Twitter related academic papers. Journal of Documentation, 69(3), 384-410. https://doi.org/10.1108/JD-03-2012-0027

Wu, S., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011) Who says what to whom on twitter. In Proceedings of the 20th international conference on World wide web (pp. 705-714). ACM.

Yoo, J. & Kim, J. (2012) Obesity in the new media. A content analysis of obesity videos on youtube. Health Communication 27, 86-97. https://doi.org/10.1080/10410236.2011.569003

Zambrano, G. R., Tomalá, J. R., & Albiño, W. A. (2016) Feeling’s analysis using the Twitter API. International Journal of Innovation and Applied Studies, 16(4), 814. http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-16-043-08

Zappavigna, M. (2015) Searchable talk: the linguistic functions of hashtags. Social Semiotics, 25(3), 274-291. https://doi.org/10.1080/10350330.2014.996948

Publicado

07-04-2021

Cómo citar

Pérez Dasilva, J., Santos Diez, M. T. ., & Meso Ayerdi, K. . (2021). Las asociaciones de enfermedades raras: Estructura de sus redes e identificación de los líderes de opinión mediante la técnica del análisis de redes sociales. Revista Latina De Comunicación Social, (79), 175–205. https://doi.org/10.4185/RLCS-2021-1498

Número

Sección

Artículos de Investigación

Artículos más leídos del mismo autor/a