Mimetic theory applied to interpersonal relationships through social networks: the case of piñagate in Mercadona

Authors

DOI:

https://doi.org/10.4185/rlcs-2026-2469

Keywords:

Mimetic theory, digital communication, viral phenomena, mimircy, social networks, VOSviewer, human interactions

Abstract

Introduction: Piñagate illustrates how social networks amplify mimetic behaviours. It analyses how desires and behaviours are digitally replicated, highlighting the role of tweets and viral content in their expansion. This case provides new perspectives on mimetic theory applied to digital phenomena and its impact on contemporary communication. Methodology: The analysis was carried out by collecting tweets with ‘pineapple’ AND ‘Mercadona’ AND ‘flirt’. After data cleaning in Excel and Google Colab, a sentiment analysis was carried out with Pipeline (Transformers) to subsequently extract keywords with NLTK and elaborate thematic maps with VOSviewer. Results: The results indicate that the content of the tweets analysed has a positive tone or a favourable response from the community analysed. Four groups are identified: General Context of Mercadona, Strategies for Flirting, Environments and Products, and Moments and Occasions. Discussion: The application of mimetic theory to social networks has generated both interest and criticism. Some argue that it provides a valuable explanation for understanding online behaviour and group dynamics. However, others criticise that it may oversimplify the complexity of human interactions and individual motivations. Conclusions: The piñagate at Mercadona illustrates how mimetic theory explains viral phenomena in social networks, highlighting how trivial symbols, such as a pineapple, are transformed into acts of interpersonal communication. This study combines data analysis and natural language, showing how digital culture redefines social norms and commercial perceptions.

Downloads

Download data is not yet available.

Author Biographies

Mª del Carmen Paradinas Márquez, ESIC University; ESIC Business & Marketing School

Law Degree from the Universidad Autónoma de Madrid (1996). Master's Degree in Human Resources Management and Labor Relations from Universidad Camilo José Cela de Madrid (2016) and PhD in Tourism from Universidad Rey Juan Carlos de Madrid with Cum Laude mention (2021). One six-year term. Lawyer with more than 20 years of professional practice. Mediator. Lecturer at ESIC University in the Departments of Humanities and Business Management. She teaches History of Spanish Institutions and various subjects of Law (civil, commercial and labor) in Official Degrees, as well as social and labor relations and conflict management in the Master's Degree in People Management and Organizational Development and in the MBA. Director of the academic department of external internships and Vice-rector of Quality.

Cristina Marín Palacios, ESIC University

Associate Professor PhD accredited by ANECA in Quantitative Methods for Economics and Business, with a six-year research period. Degree in Mathematics (UCM), PhD in Business Economics (URJC), Master in Computer Science and Technology (UC3M) and in Business Management (URJC). My research deals with data analysis and mathematical models applied to ethics, social behavior, gender, disability, employment, and education in marketing and economics. Currently, professor of Computer Science in Artificial Intelligence at ESIC University and director of the academic department of Computer Science and New Technologies at ESIC University.

References

Abubakar, S., Said, M. F. M., Abas, M. A., Ismail, N. A., Khalid, A. H., Roslan, M. F. y Kaisan, M. U. (2024). Hydrogen-fuelled internal combustion engines-Bibliometric analysis on research trends, hotspots, and challenges. International Journal of Hydrogen Energy, 61, 623-638. https://doi.org/10.1016/j.ijhydene.2024.02.280 DOI: https://doi.org/10.1016/j.ijhydene.2024.02.280

Ahuja, R. y Sharma, S. C. (2022). Transformer-based word embedding with CNN model to detect sarcasm and irony. Arabian Journal for Science and Engineering, 47(8), 9379-9392. https://doi.org/10.1007/s13369-021-06193-3 DOI: https://doi.org/10.1007/s13369-021-06193-3

Areshey, A. y Mathkour, H. (2024). Exploring transformer models for sentiment classification: A comparison of BERT, RoBERTa, ALBERT, DistilBERT, and XLnet. Expert Systems, 41(11). https://doi.org/10.1111/exsy.13701 DOI: https://doi.org/10.1111/exsy.13701

Bandura, A. (2009). Social cognitive theory of mass communication. En J. Bryant y M. B. Oliver (Eds.), Media effects (pp. 110-140). Routledge. DOI: https://doi.org/10.4324/9780203877111-12

Berger, J. (2016). Contagious: Why things catch on. Simon and Schuster.

Corchado Robles, B. (2016). Inferencias de ironía, mentira y desdén en interacciones comunicativas de jóvenes universitarios puertorriqueños realizadas a través de las redes sociales en la Internet. Revista de Estudios Hispánicos, 3(1), 149-160. https://revistas.upr.edu/images/reh/2016/n1/a7.pdf

Corcoran, M. P. (2012). Society, space and the public realm: beyond gated individualism. Irish Journal of sociology, 20(1), 1-18. https://doi.org/10.7227/IJS.20.1.1 DOI: https://doi.org/10.7227/IJS.20.1.1

Craig, R. T. (2013). Communication theory and social change. Communication & Social Change, 1(1), 5-18. https://hipatiapress.com/hpjournals/index.php/csc/article/view/758

Dawkins, R. (2016). The selfish gene. Oxford University Press. DOI: https://doi.org/10.4324/9781912281251

Dey, R. K. y Das, A. K. (2023). Modified term frequency-inverse document frequency based deep hybrid framework for sentiment analysis. Multimedia Tools and Applications, 82(21), 32967-32990. https://doi.org/10.1007/s11042-023-14653-1 DOI: https://doi.org/10.1007/s11042-023-14653-1

Ding, Y., You, J., Machulla, T. K., Jacobs, J., Sen, P. y Höllerer, T. (2022). Impact of annotator demographics on sentiment dataset labeling. Proceedings of the ACM on Human-Computer Interaction, 6(CSCW2), 1-22. https://doi.org/10.1145/3555632 DOI: https://doi.org/10.1145/3555632

Eke, C. I., Norman, A. A. y Shuib, L. (2021). Multi-feature fusion framework for sarcasm identification on twitter data: A machine learning based approach. PLoS ONE, 16(6). https://doi.org/10.1371/journal.pone.0252918 DOI: https://doi.org/10.1371/journal.pone.0252918

Etienne, H. y Charton, F. (2024). A mimetic approach to social influence on Instagram. Philosophy & Technology, 37(65), 1-37. https://doi.org/10.1007/s13347-024-00736-w DOI: https://doi.org/10.1007/s13347-024-00736-w

Fang, H., Xu, G., Long, Y. y Tang, W. (2022). An effective ELECTRA-based pipeline for sentiment analysis of tourist attraction reviews. Applied Sciences, 12(21). https://doi.org/10.3390/app122110881 DOI: https://doi.org/10.3390/app122110881

Fuhse, J. A. (2015). Networks from communication. European Journal of Social Theory, 18(1), 39-59. https://doi.org/10.1177/1368431014549683 DOI: https://doi.org/10.1177/1368431014549683

Fuhse, J. A. (2020). Theories of social networks. En R. Light y J. Moody (Eds.), The Oxford Handbook of Social Networks (pp. 34-49). Oxford University Press. DOI: https://doi.org/10.1093/oxfordhb/9780190251765.013.5

Girard, R. (1965). Desire, Deceit, and the Novel: Self and Other in Literary Structure. Johns Hopkins University Press.

Hazrati, L., Sokhandan, A. y Farzinvash, L. (2025). Improving irony speech spreaders profiling on social networks using clustering & transformer based models. Language Resources and Evaluation, 1-31. https://doi.org/10.1007/s10579-025-09815-6 DOI: https://doi.org/10.1007/s10579-025-09815-6

Hernández Romero, D. (2023). Girard y Proust: la mediación interna. En busca del tiempo perdido. Revista Interdisciplinar De Teoría Mimética. Xiphias Gladius, 6, 83-90. https://doi.org/10.32466/eufv-xg.2023.6.727.83-90 DOI: https://doi.org/10.32466/eufv-xg.2023.6.727.83-90

Hoffman, B. L., Wolynn, R., Barrett, E., Manganello, J. A., Felter, E. M., Sidani, J. E., Miller E., Burke J.G., Primack B. A. y Chu, K. H. (2023). Viewer reactions to EVALI storylines on popular medical dramas: A thematic analysis of Twitter messages. Journal of Health Communication, 28(5), 282-291. https://doi.org/10.1080/10810730.2023.2201814 DOI: https://doi.org/10.1080/10810730.2023.2201814

Iasulaitis, S., Valejo, A. D. B., Greco, B. C., Perillo, V. G., Messias, G. H. y Vicari, I. (2025). The Interfaces Twitter Elections Dataset: Construction process and characteristics of big social data during the 2022 presidential elections in Brazil. PloS one, 20(2). https://doi.org/10.1371/journal.pone.0316626 DOI: https://doi.org/10.1371/journal.pone.0316626

Jacob, D. y Banisch, S. (2023). Polarization in social media: A virtual worlds-based approach. Journal of Artificial Societies and Social Simulation, 26(3). http://jasss.soc.surrey.ac.uk/26/3/11.html DOI: https://doi.org/10.18564/jasss.5170

Kalkhoff, W., Dippong, J., Gibson, A. y Gregory, S. W. (2020). Society in Peril? How Distance Media Communication Could Be Undermining Symbolic Interaction. En R.T. Serpe, R. Stryker y B. Powell (Eds.), Identity and Symbolic Interaction (pp. 317-338). Springer, Cham. https://doi.org/10.1007/978-3-030-41231-9_12 DOI: https://doi.org/10.1007/978-3-030-41231-9_12

Koltsova, E. A. y Kartashkova, F. I. (2022). Digital communication and multimodal features: Functioning of emoji in interpersonal communication. RUDN Journal of Language Studies, Semiotics and Semantics, 13(3), 769-783. https://doi.org/10.22363/2313-2299-2022-13-3-769-783 DOI: https://doi.org/10.22363/2313-2299-2022-13-3-769-783

Kovaz, D., Kreuz, R. J. y Riordan, M. A. (2013). Distinguishing sarcasm from literal language: Evidence from books and blogging. Discourse Processes, 50(8), 598-615. https://doi.org/10.1080/0163853X.2013.849525 DOI: https://doi.org/10.1080/0163853X.2013.849525

Lebreton, M., Kawa, S., Forgeot d'Arc, B., Daunizeau, J. y Pessiglione, M. (2012). Your Goal Is Mine: Unraveling Mimetic Desires in the Human Brain. Journal of Neuroscience, 32(21), 7146-7157. https://doi.org/10.1523/JNEUROSCI.4821-11.2012 DOI: https://doi.org/10.1523/JNEUROSCI.4821-11.2012

Lei, J., Rahman, T., Shafik, R., Wheeldon, A., Yakovlev, A., Granmo, O. C., Kawsar, F. y Mathur, A. (2021). Low-power audio keyword spotting using tsetlin machines. Journal of Low Power Electronics and Applications, 11(2), 18. https://doi.org/10.3390/jlpea11020018 DOI: https://doi.org/10.3390/jlpea11020018

Littwin, K. y Stock, W. G. (2020). Signaling smartness: Smart cities and digital art in public spaces. Journal of Information Science Theory and Practice, 8(1), 20-32. https://doi.org/10.1633/JISTaP.2020.8.1.2

Livingston, P. (1994). What is mimetic desire? Philosophical Psychology, 7(3), 291-305. https://doi.org/10.1080/09515089408573125 DOI: https://doi.org/10.1080/09515089408573125

Ma, Y., Deng, X., Chen, Z., Yuan, Y., Guan, S. y Guo, X. (2024). Safety and efficacy analysis of the off-label use of pipeline embolization devices for intracranial aneurysms: a propensity score matching study. Frontiers in Neurology, 14. https://doi.org/10.3389/fneur.2023.1278366 DOI: https://doi.org/10.3389/fneur.2023.1278366

Machuco Rosa, A. (2018). Mimesis, network theory and digital social networks. Revista interdisciplinar de Teoría Mimética. Xiphias Gladius, 1, 93-111. https://doi.org/10.32466/eufv-xg.2018.1.387.93-111 DOI: https://doi.org/10.32466/eufv-xg.2018.1.387.93-111

Mahrukh, R., Shakil, S. y Malik, A. S. (2023). Sentiments analysis of fMRI using automatically generated stimuli labels under naturalistic paradigm. Scientific Reports, 13(1), 7267. https://doi.org/10.1038/s41598-023-33734-7 DOI: https://doi.org/10.1038/s41598-023-33734-7

Marín-Palacios, C. (2023). Female entrepreneurship in family business: bibliographic analysis. Journal of Family Business Management, 13(3), 552-578. https://doi.org/10.1108/JFBM-04-2022-0061 DOI: https://doi.org/10.1108/JFBM-04-2022-0061

Mendelson, E. A. (2023). Sensemaking and public intimacy on TikTok: How viral videos influence interpersonal relationships offline. New Media & Society, 26(12), 7081-7099. https://doi.org/10.1177/14614448231163231 DOI: https://doi.org/10.1177/14614448231163231

Moharil, A. y Sharma, A. (2023). TABASCO: A transformer based contextualization toolkit. Science of Computer Programming, 230. https://doi.org/10.1016/j.scico.2023.102994 DOI: https://doi.org/10.1016/j.scico.2023.102994

Monge, P. R. y Contractor, N. S. (2003). Theories of communication networks. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780195160369.001.0001

Noor, S., Guo, Y., Shah, S. H. H., Nawaz, M. S. y Butt, A. S. (2020). Research synthesis and thematic analysis of twitter through bibliometric analysis. International Journal on Semantic Web and Information Systems (IJSWIS), 16(3), 88-109. https://doi.org/10.4018/IJSWIS.2020070106 DOI: https://doi.org/10.4018/IJSWIS.2020070106

Peters, C. y Allan, S. (2022). Weaponizing memes: The journalistic mediation of visual politicization. Digital Journalism, 10(2), 217-229. https://doi.org/10.1080/21670811.2021.1903958 DOI: https://doi.org/10.1080/21670811.2021.1903958

Reyes, A., Rosso, P. y Buscaldi, D. (2012). From humor recognition to irony detection: The figurative language of social media. Data & Knowledge Engineering, 74, 1-12. https://doi.org/10.1016/j.datak.2012.02.005 DOI: https://doi.org/10.1016/j.datak.2012.02.005

Richardson, F. C. y Manglos, N. D. (2013). Reciprocity and rivalry: A critical introduction to mimetic scapegoat theory. Pastoral Psychology, 62, 423-436. https://doi.org/10.1007/s11089-012-0472-x DOI: https://doi.org/10.1007/s11089-012-0472-x

Rodrigo, C., Gaspar, F. J., Hu, X. y Zikatanov, L. (2015). A finite element framework for some mimetic finite difference discretizations. Computers & Mathematics with Applications, 70(11), 2661-2673. https://doi.org/10.1016/j.camwa.2015.07.012 DOI: https://doi.org/10.1016/j.camwa.2015.07.012

Roemer, M. K. (2007). Ritual participation and social support in a major japanese festival. Journal for the Scientific Study of Religion, 46(2), 185-200. https://doi.org/10.1111/j.1468-5906.2007.00350.x DOI: https://doi.org/10.1111/j.1468-5906.2007.00350.x

Rothermich, K. y Pell, M. D. (2015). Introducing RISC: A New Video Inventory for Testing Social Perception. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0133902 DOI: https://doi.org/10.1371/journal.pone.0133902

da Silva, D. W. y Baldissera, R. (2021). Direcionamento da visibilidade nas mídias sociais a partir da estratégia de baralhamento / Targeting visibility on social medias from the shuffling strategy. Revista Internacional De Relaciones Públicas, 11(21), 189-206. https://doi.org/10.5783/revrrpp.v11i21.705 DOI: https://doi.org/10.5783/revrrpp.v11i21.705

Sánchez Villalón, I. (2019). Etiología y naturaleza de los trastornos alimentarios desde la teoría mimética de René Girard. Revista Interdisciplinar De Teoría Mimética. Xiphias Gladius, 2, 65-81. https://doi.org/10.32466/eufv-xg.2019.2.566.65-81 DOI: https://doi.org/10.32466/eufv-xg.2019.2.566.65-81

Saroj, A. y Pal, S. (2024). Ensemble-based domain adaptation on social media posts for irony detection. Multimedia Tools and Applications, 83(8), 23249-23268. https://doi.org/10.1007/s11042-023-16180-5 DOI: https://doi.org/10.1007/s11042-023-16180-5

Van Hee, C., Jacobs, G., Emmery, C., Desmet, B., Lefever, E., Verhoeven, B., De Pauw, G., Daelemans, W. y Hoste, V. (2018). Automatic detection of cyberbullying in social media text. PloS one, 13(10), e0203794. https://doi.org/10.1371/journal.pone.0203794 DOI: https://doi.org/10.1371/journal.pone.0203794

Wen, Z., Gui, L., Wang, Q., Guo, M., Yu, X., Du, J. y Xu, R. (2022). Sememe knowledge and auxiliary information enhanced approach for sarcasm detection. Information Processing & Management, 59(3). https://doi.org/10.1016/j.ipm.2022.102883 DOI: https://doi.org/10.1016/j.ipm.2022.102883

Wongkitrungrueng, A. y Assarut, N. (2020). The role of live streaming in building consumer trust and engagement with social commerce sellers. Journal of business research, 117, 543-556. https://doi.org/10.1016/j.jbusres.2018.08.032 DOI: https://doi.org/10.1016/j.jbusres.2018.08.032

Xu, G., Zhang, Z., Zhang, T., Yu, S., Meng, Y. y Chen, S. (2022). Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning. Knowledge-Based Systems, 245. https://doi.org/10.1016/j.knosys.2022.108586 DOI: https://doi.org/10.1016/j.knosys.2022.108586

Zeng, W. F., Zhou, X. X., Willems, S., Ammar, C., Wahle, M., Bludau, I., Voytik, E., Strauss, M. T. y Mann, M. (2022). AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics. Nature Communications, 13(1), 7238. https://doi.org/10.1038/s41467-022-34904-3 DOI: https://doi.org/10.1038/s41467-022-34904-3

Zulli, D. y Zulli, D. J. (2022). Extending the Internet meme: Conceptualizing technological mimesis and imitation publics on the TikTok platform. New Media & Society, 24(8), 1872-1890. https://doi.org/10.1177/1461444820983603 DOI: https://doi.org/10.1177/1461444820983603

Published

2025-06-24

How to Cite

Paradinas Márquez, M. del C., & Marín Palacios, C. (2025). Mimetic theory applied to interpersonal relationships through social networks: the case of piñagate in Mercadona. Revista Latina De Comunicación Social, (84), 1–16. https://doi.org/10.4185/rlcs-2026-2469

Issue

Section

Miscellaneous