La teoría mimética aplicada a las relaciones interpersonales a través de redes sociales: el caso de piñagate en Mercadona
DOI:
https://doi.org/10.4185/rlcs-2026-2469Palabras clave:
Teoría mimética, Comunicación digital, fenómenos virales, Imitación, redes sociales, VOSviewer, Interacciones humanasResumen
Introducción: El piñagate ilustra cómo las redes sociales amplifican comportamientos miméticos. Se analiza cómo deseos y comportamientos se replican digitalmente, destacando el papel de tuits y contenidos virales en su expansión. Este caso aporta nuevas perspectivas sobre la teoría mimética aplicada a fenómenos digitales y su impacto en la comunicación contemporánea. Metodología: El análisis se llevó a cabo mediante la recolección de tuits con “piña” AND “Mercadona” AND “ligar”. Tras la limpieza de datos en Excel y Google Colab se hizo un análisis de sentimiento con Pipeline (Transformers) para, posteriormente, extraer las palabras clave con NLTK y elaborar los mapas temáticos con VOSviewer. Resultados: Los resultados indican que el contenido de los tuits analizados tiene un tono positivo o una respuesta favorable de la comunidad analizada. Se identifican cuatro grupos: Contexto General de Mercadona, Estrategias para Ligar, Ambientes y Productos, y Momentos y Ocasiones. Discusión: La aplicación de la teoría mimética a las redes sociales ha generado tanto interés como críticas. Algunos argumentan que proporciona una explicación valiosa para entender el comportamiento en línea y las dinámicas de grupo. Sin embargo, otros critican que puede simplificar excesivamente la complejidad de las interacciones humanas y las motivaciones individuales. Conclusiones: El piñagate en Mercadona ilustra cómo la teoría mimética explica fenómenos virales en redes sociales, destacando cómo símbolos triviales, como una piña, se transforman en actos de comunicación interpersonal. Este estudio combina análisis de datos y lenguaje natural, mostrando cómo la cultura digital redefine normas sociales y percepciones comerciales.
Descargas
Citas
Abubakar, S., Said, M. F. M., Abas, M. A., Ismail, N. A., Khalid, A. H., Roslan, M. F. y Kaisan, M. U. (2024). Hydrogen-fuelled internal combustion engines-Bibliometric analysis on research trends, hotspots, and challenges. International Journal of Hydrogen Energy, 61, 623-638. https://doi.org/10.1016/j.ijhydene.2024.02.280 DOI: https://doi.org/10.1016/j.ijhydene.2024.02.280
Ahuja, R. y Sharma, S. C. (2022). Transformer-based word embedding with CNN model to detect sarcasm and irony. Arabian Journal for Science and Engineering, 47(8), 9379-9392. https://doi.org/10.1007/s13369-021-06193-3 DOI: https://doi.org/10.1007/s13369-021-06193-3
Areshey, A. y Mathkour, H. (2024). Exploring transformer models for sentiment classification: A comparison of BERT, RoBERTa, ALBERT, DistilBERT, and XLnet. Expert Systems, 41(11). https://doi.org/10.1111/exsy.13701 DOI: https://doi.org/10.1111/exsy.13701
Bandura, A. (2009). Social cognitive theory of mass communication. En J. Bryant y M. B. Oliver (Eds.), Media effects (pp. 110-140). Routledge. DOI: https://doi.org/10.4324/9780203877111-12
Berger, J. (2016). Contagious: Why things catch on. Simon and Schuster.
Corchado Robles, B. (2016). Inferencias de ironía, mentira y desdén en interacciones comunicativas de jóvenes universitarios puertorriqueños realizadas a través de las redes sociales en la Internet. Revista de Estudios Hispánicos, 3(1), 149-160. https://revistas.upr.edu/images/reh/2016/n1/a7.pdf
Corcoran, M. P. (2012). Society, space and the public realm: beyond gated individualism. Irish Journal of sociology, 20(1), 1-18. https://doi.org/10.7227/IJS.20.1.1 DOI: https://doi.org/10.7227/IJS.20.1.1
Craig, R. T. (2013). Communication theory and social change. Communication & Social Change, 1(1), 5-18. https://hipatiapress.com/hpjournals/index.php/csc/article/view/758
Dawkins, R. (2016). The selfish gene. Oxford University Press. DOI: https://doi.org/10.4324/9781912281251
Dey, R. K. y Das, A. K. (2023). Modified term frequency-inverse document frequency based deep hybrid framework for sentiment analysis. Multimedia Tools and Applications, 82(21), 32967-32990. https://doi.org/10.1007/s11042-023-14653-1 DOI: https://doi.org/10.1007/s11042-023-14653-1
Ding, Y., You, J., Machulla, T. K., Jacobs, J., Sen, P. y Höllerer, T. (2022). Impact of annotator demographics on sentiment dataset labeling. Proceedings of the ACM on Human-Computer Interaction, 6(CSCW2), 1-22. https://doi.org/10.1145/3555632 DOI: https://doi.org/10.1145/3555632
Eke, C. I., Norman, A. A. y Shuib, L. (2021). Multi-feature fusion framework for sarcasm identification on twitter data: A machine learning based approach. PLoS ONE, 16(6). https://doi.org/10.1371/journal.pone.0252918 DOI: https://doi.org/10.1371/journal.pone.0252918
Etienne, H. y Charton, F. (2024). A mimetic approach to social influence on Instagram. Philosophy & Technology, 37(65), 1-37. https://doi.org/10.1007/s13347-024-00736-w DOI: https://doi.org/10.1007/s13347-024-00736-w
Fang, H., Xu, G., Long, Y. y Tang, W. (2022). An effective ELECTRA-based pipeline for sentiment analysis of tourist attraction reviews. Applied Sciences, 12(21). https://doi.org/10.3390/app122110881 DOI: https://doi.org/10.3390/app122110881
Fuhse, J. A. (2015). Networks from communication. European Journal of Social Theory, 18(1), 39-59. https://doi.org/10.1177/1368431014549683 DOI: https://doi.org/10.1177/1368431014549683
Fuhse, J. A. (2020). Theories of social networks. En R. Light y J. Moody (Eds.), The Oxford Handbook of Social Networks (pp. 34-49). Oxford University Press. DOI: https://doi.org/10.1093/oxfordhb/9780190251765.013.5
Girard, R. (1965). Desire, Deceit, and the Novel: Self and Other in Literary Structure. Johns Hopkins University Press.
Hazrati, L., Sokhandan, A. y Farzinvash, L. (2025). Improving irony speech spreaders profiling on social networks using clustering & transformer based models. Language Resources and Evaluation, 1-31. https://doi.org/10.1007/s10579-025-09815-6 DOI: https://doi.org/10.1007/s10579-025-09815-6
Hernández Romero, D. (2023). Girard y Proust: la mediación interna. En busca del tiempo perdido. Revista Interdisciplinar De Teoría Mimética. Xiphias Gladius, 6, 83-90. https://doi.org/10.32466/eufv-xg.2023.6.727.83-90 DOI: https://doi.org/10.32466/eufv-xg.2023.6.727.83-90
Hoffman, B. L., Wolynn, R., Barrett, E., Manganello, J. A., Felter, E. M., Sidani, J. E., Miller E., Burke J.G., Primack B. A. y Chu, K. H. (2023). Viewer reactions to EVALI storylines on popular medical dramas: A thematic analysis of Twitter messages. Journal of Health Communication, 28(5), 282-291. https://doi.org/10.1080/10810730.2023.2201814 DOI: https://doi.org/10.1080/10810730.2023.2201814
Iasulaitis, S., Valejo, A. D. B., Greco, B. C., Perillo, V. G., Messias, G. H. y Vicari, I. (2025). The Interfaces Twitter Elections Dataset: Construction process and characteristics of big social data during the 2022 presidential elections in Brazil. PloS one, 20(2). https://doi.org/10.1371/journal.pone.0316626 DOI: https://doi.org/10.1371/journal.pone.0316626
Jacob, D. y Banisch, S. (2023). Polarization in social media: A virtual worlds-based approach. Journal of Artificial Societies and Social Simulation, 26(3). http://jasss.soc.surrey.ac.uk/26/3/11.html DOI: https://doi.org/10.18564/jasss.5170
Kalkhoff, W., Dippong, J., Gibson, A. y Gregory, S. W. (2020). Society in Peril? How Distance Media Communication Could Be Undermining Symbolic Interaction. En R.T. Serpe, R. Stryker y B. Powell (Eds.), Identity and Symbolic Interaction (pp. 317-338). Springer, Cham. https://doi.org/10.1007/978-3-030-41231-9_12 DOI: https://doi.org/10.1007/978-3-030-41231-9_12
Koltsova, E. A. y Kartashkova, F. I. (2022). Digital communication and multimodal features: Functioning of emoji in interpersonal communication. RUDN Journal of Language Studies, Semiotics and Semantics, 13(3), 769-783. https://doi.org/10.22363/2313-2299-2022-13-3-769-783 DOI: https://doi.org/10.22363/2313-2299-2022-13-3-769-783
Kovaz, D., Kreuz, R. J. y Riordan, M. A. (2013). Distinguishing sarcasm from literal language: Evidence from books and blogging. Discourse Processes, 50(8), 598-615. https://doi.org/10.1080/0163853X.2013.849525 DOI: https://doi.org/10.1080/0163853X.2013.849525
Lebreton, M., Kawa, S., Forgeot d'Arc, B., Daunizeau, J. y Pessiglione, M. (2012). Your Goal Is Mine: Unraveling Mimetic Desires in the Human Brain. Journal of Neuroscience, 32(21), 7146-7157. https://doi.org/10.1523/JNEUROSCI.4821-11.2012 DOI: https://doi.org/10.1523/JNEUROSCI.4821-11.2012
Lei, J., Rahman, T., Shafik, R., Wheeldon, A., Yakovlev, A., Granmo, O. C., Kawsar, F. y Mathur, A. (2021). Low-power audio keyword spotting using tsetlin machines. Journal of Low Power Electronics and Applications, 11(2), 18. https://doi.org/10.3390/jlpea11020018 DOI: https://doi.org/10.3390/jlpea11020018
Littwin, K. y Stock, W. G. (2020). Signaling smartness: Smart cities and digital art in public spaces. Journal of Information Science Theory and Practice, 8(1), 20-32. https://doi.org/10.1633/JISTaP.2020.8.1.2
Livingston, P. (1994). What is mimetic desire? Philosophical Psychology, 7(3), 291-305. https://doi.org/10.1080/09515089408573125 DOI: https://doi.org/10.1080/09515089408573125
Ma, Y., Deng, X., Chen, Z., Yuan, Y., Guan, S. y Guo, X. (2024). Safety and efficacy analysis of the off-label use of pipeline embolization devices for intracranial aneurysms: a propensity score matching study. Frontiers in Neurology, 14. https://doi.org/10.3389/fneur.2023.1278366 DOI: https://doi.org/10.3389/fneur.2023.1278366
Machuco Rosa, A. (2018). Mimesis, network theory and digital social networks. Revista interdisciplinar de Teoría Mimética. Xiphias Gladius, 1, 93-111. https://doi.org/10.32466/eufv-xg.2018.1.387.93-111 DOI: https://doi.org/10.32466/eufv-xg.2018.1.387.93-111
Mahrukh, R., Shakil, S. y Malik, A. S. (2023). Sentiments analysis of fMRI using automatically generated stimuli labels under naturalistic paradigm. Scientific Reports, 13(1), 7267. https://doi.org/10.1038/s41598-023-33734-7 DOI: https://doi.org/10.1038/s41598-023-33734-7
Marín-Palacios, C. (2023). Female entrepreneurship in family business: bibliographic analysis. Journal of Family Business Management, 13(3), 552-578. https://doi.org/10.1108/JFBM-04-2022-0061 DOI: https://doi.org/10.1108/JFBM-04-2022-0061
Mendelson, E. A. (2023). Sensemaking and public intimacy on TikTok: How viral videos influence interpersonal relationships offline. New Media & Society, 26(12), 7081-7099. https://doi.org/10.1177/14614448231163231 DOI: https://doi.org/10.1177/14614448231163231
Moharil, A. y Sharma, A. (2023). TABASCO: A transformer based contextualization toolkit. Science of Computer Programming, 230. https://doi.org/10.1016/j.scico.2023.102994 DOI: https://doi.org/10.1016/j.scico.2023.102994
Monge, P. R. y Contractor, N. S. (2003). Theories of communication networks. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780195160369.001.0001
Noor, S., Guo, Y., Shah, S. H. H., Nawaz, M. S. y Butt, A. S. (2020). Research synthesis and thematic analysis of twitter through bibliometric analysis. International Journal on Semantic Web and Information Systems (IJSWIS), 16(3), 88-109. https://doi.org/10.4018/IJSWIS.2020070106 DOI: https://doi.org/10.4018/IJSWIS.2020070106
Peters, C. y Allan, S. (2022). Weaponizing memes: The journalistic mediation of visual politicization. Digital Journalism, 10(2), 217-229. https://doi.org/10.1080/21670811.2021.1903958 DOI: https://doi.org/10.1080/21670811.2021.1903958
Reyes, A., Rosso, P. y Buscaldi, D. (2012). From humor recognition to irony detection: The figurative language of social media. Data & Knowledge Engineering, 74, 1-12. https://doi.org/10.1016/j.datak.2012.02.005 DOI: https://doi.org/10.1016/j.datak.2012.02.005
Richardson, F. C. y Manglos, N. D. (2013). Reciprocity and rivalry: A critical introduction to mimetic scapegoat theory. Pastoral Psychology, 62, 423-436. https://doi.org/10.1007/s11089-012-0472-x DOI: https://doi.org/10.1007/s11089-012-0472-x
Rodrigo, C., Gaspar, F. J., Hu, X. y Zikatanov, L. (2015). A finite element framework for some mimetic finite difference discretizations. Computers & Mathematics with Applications, 70(11), 2661-2673. https://doi.org/10.1016/j.camwa.2015.07.012 DOI: https://doi.org/10.1016/j.camwa.2015.07.012
Roemer, M. K. (2007). Ritual participation and social support in a major japanese festival. Journal for the Scientific Study of Religion, 46(2), 185-200. https://doi.org/10.1111/j.1468-5906.2007.00350.x DOI: https://doi.org/10.1111/j.1468-5906.2007.00350.x
Rothermich, K. y Pell, M. D. (2015). Introducing RISC: A New Video Inventory for Testing Social Perception. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0133902 DOI: https://doi.org/10.1371/journal.pone.0133902
da Silva, D. W. y Baldissera, R. (2021). Direcionamento da visibilidade nas mídias sociais a partir da estratégia de baralhamento / Targeting visibility on social medias from the shuffling strategy. Revista Internacional De Relaciones Públicas, 11(21), 189-206. https://doi.org/10.5783/revrrpp.v11i21.705 DOI: https://doi.org/10.5783/revrrpp.v11i21.705
Sánchez Villalón, I. (2019). Etiología y naturaleza de los trastornos alimentarios desde la teoría mimética de René Girard. Revista Interdisciplinar De Teoría Mimética. Xiphias Gladius, 2, 65-81. https://doi.org/10.32466/eufv-xg.2019.2.566.65-81 DOI: https://doi.org/10.32466/eufv-xg.2019.2.566.65-81
Saroj, A. y Pal, S. (2024). Ensemble-based domain adaptation on social media posts for irony detection. Multimedia Tools and Applications, 83(8), 23249-23268. https://doi.org/10.1007/s11042-023-16180-5 DOI: https://doi.org/10.1007/s11042-023-16180-5
Van Hee, C., Jacobs, G., Emmery, C., Desmet, B., Lefever, E., Verhoeven, B., De Pauw, G., Daelemans, W. y Hoste, V. (2018). Automatic detection of cyberbullying in social media text. PloS one, 13(10), e0203794. https://doi.org/10.1371/journal.pone.0203794 DOI: https://doi.org/10.1371/journal.pone.0203794
Wen, Z., Gui, L., Wang, Q., Guo, M., Yu, X., Du, J. y Xu, R. (2022). Sememe knowledge and auxiliary information enhanced approach for sarcasm detection. Information Processing & Management, 59(3). https://doi.org/10.1016/j.ipm.2022.102883 DOI: https://doi.org/10.1016/j.ipm.2022.102883
Wongkitrungrueng, A. y Assarut, N. (2020). The role of live streaming in building consumer trust and engagement with social commerce sellers. Journal of business research, 117, 543-556. https://doi.org/10.1016/j.jbusres.2018.08.032 DOI: https://doi.org/10.1016/j.jbusres.2018.08.032
Xu, G., Zhang, Z., Zhang, T., Yu, S., Meng, Y. y Chen, S. (2022). Aspect-level sentiment classification based on attention-BiLSTM model and transfer learning. Knowledge-Based Systems, 245. https://doi.org/10.1016/j.knosys.2022.108586 DOI: https://doi.org/10.1016/j.knosys.2022.108586
Zeng, W. F., Zhou, X. X., Willems, S., Ammar, C., Wahle, M., Bludau, I., Voytik, E., Strauss, M. T. y Mann, M. (2022). AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics. Nature Communications, 13(1), 7238. https://doi.org/10.1038/s41467-022-34904-3 DOI: https://doi.org/10.1038/s41467-022-34904-3
Zulli, D. y Zulli, D. J. (2022). Extending the Internet meme: Conceptualizing technological mimesis and imitation publics on the TikTok platform. New Media & Society, 24(8), 1872-1890. https://doi.org/10.1177/1461444820983603 DOI: https://doi.org/10.1177/1461444820983603
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Mª del Carmen Paradinas Márquez, Cristina Marín Palacios

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.